

Cosmic UV background fluctuations at z~3 as traced by metal ions: radiative transfer effects

L. Graziani, B. Ciardi

Max Planck Institute for Astrophysics

- Helium reionisation
- UV background at z~3
- RT simulation through metals
- UV fluctuations traced by η , T, τ_{silv}/τ_{civ}

He reionisation

- EPOCH: Hell dominates at z > 3 (Reimers 05); an extended reionisation is possible (Bolton 10; Becker 11).
 He fully ionised around z ~2.8 (Kriss 01; Syphers 11, 11a).
- Hell OPACITY: highly inhomogeneous (Smette 02; Muzahid 11). $\eta = N_{Hell}/N_{Hl}$
 - varies in [20-200] on [2-10] Mpc/h scales (Fardal 98, Shull 99, Fechner 07)
 - → Significant spatial fluctuations in the radiation field at the ionisation edges of HI and HeII?
- IGM T: Statistical detections of a jump in T around z ~3 (Hui & Gnedin 1997; Ricotti et al. 2000; Schaye et al. 2000; Bernardi et al. 2003), but not confirmed by independent analyses (McDonald & Miralda-Escudé 2001)

He reionisation: Ly α forest

η: in a photo-ionised IGM is proportional to the spectral shape of the ionising background (Miralda-Escude' 73).

$$\eta \propto \frac{\Gamma_{\text{HI}}}{\Gamma_{\text{HeII}}},$$

where $\Gamma_{\rm HI}$, $\Gamma_{\rm HeII}$ are photo-ionisation rates of HI and HeII. \rightarrow Spatially fluctuating spectral shape?

• **T**: equation of state of photo-ionised medium follows (Hui&Gnedin 97; Valageas et al. 02):

$$T = T_0 \Delta^{\gamma - 1}$$
,

where T_0 is temperature at mean density and Δ is the gas overdensity. \rightarrow Fluctuations in γ ?

UV background modelling at z~3

- UVB uncertain at z~3: F. Haardt and P. Madau assume spatially uniform UVB and model it with 1D code (CUBA).
- For photons E>1Ryd (13.6 eV) the HM assumption can fail at z~3:
 - 1) POINT SOURCE VARIABILITY:
 - QSOs are rare in space + clustering
 - Finite lifetime
 - Spectral variability
 - → HeII reionization is completed by QSOs at z~3 ?
 - 2) **RADIATIVE TRANSFER EFFECTS:** could affect small and large scales
 - Small scale (~10h⁻¹ Mpc) RT effects (Maselli&Ferrara 05)
 - Large scale: filtering but.. collisionally ionised gas could produce $N_{hell}/N_{Hl} < 10$.

SPATIAL FLUCTUATIONS OF THE UVB INTENSITY AND SPECTRAL SHAPE ARE TRACED H, He..

→ CAN WE USE METAL IONS ??

UV Spectral Shape Modelling

- A plethora of potentials near E=4Ryd (54.4 eV).
- Metals ions can provide additional points across the HeII absorption to fix the slope and check/invalidate the model assumptions.

Oppenheimer, et al.,2009:

Metal ionization fractions calculated with CLOUDY (Ferland et al.) as function of density and temperature.

NOT SELF-CONSISTENT WITH THE RT: tables assume the spectral shape slope !

Spectral Shape Modelling ζ_{obs} : τ_{civ}/τ_{siiv}

MAYBE OBSERVATIONS CAN HELP...

- Songaila (1998): YES. Abrupt change of τ_{Silv}/τ_{civ} around z ~ 3
 → sudden hardening of the UVB.
- Agafonova (2005-2007): YES. UVB Spectral shape shows a sharp reduction in flux in the energy range 3 Ryd < E < 4 Ryd
 → sudden hardening of the UVB. Metal ions can be used.
- Kim et al. (2002): NO. Do not see any abrupt change in N_{Siiv}/N_{CIV} at 1.6 < z < 3.6. → Local sources dominated metals. Not a good tracer.
- Boksenberg (2003): NO
- Aguirre (2004): NO

Conclusions dependent on photoionisation models. RT neglected

Simulation: small scale fluctuations induced by RT

HYDRO SETUP:

- <u>Hydro Snapshot</u> at z~3 (Gadget3): <u>metal enrichment and spreading</u> accounted for (Maio 2010). Scale: 10/h Mpc.
- 11 metals (Tornatore 2007). We consider <u>only C, O, Si</u>.. other metals can be added.

HM96 UVB model

RT SETUP:

- CRASH in post-processing.
- Photo-ionised metals. Collisionally ionised regions accounted for separately.
- Spatially hom ogeneous HM96 UVB.
- C,O,Si ions evaluated including cooling by metal lines.

IC:

- In absence of a full reionisation setting the initial ionisation, it <u>starts from neutral gas at</u> <u>T~100K</u>.
- Follows the RT as in Maselli and Ferrara 2005.

AIM:

 Amplitude of spatial fluctuations in :

$$\eta = \eta(\Delta)$$
$$T = T(\Delta)$$
$$\zeta = \zeta(\Delta)$$

induced by the RT through the cosmic web at z~3.

 Theoretically <u>confirms that the</u> metal line ratios can be used as tool

Fluctuations in η

• Calculated as in Fardal 98:

$$\eta \sim \frac{\alpha_{\text{HeII}}(T)}{\alpha_{\text{HI}}(T)} \frac{n_{\text{HeIII}}}{n_{\text{HII}}} \frac{\Gamma_{\text{HI}}}{\Gamma_{\text{HeII}}},$$

• Shows evident spatial correlation $\eta(\Delta)$

Scatter plot of $\eta(\Delta)$ at t~5.5 10⁶ yrs. The average value of $\eta(\Delta)$ in red crosses.

Slice cut at t~5.5 10⁶ yrs. $\Delta \sim 1$ white solid line, $\Delta \sim 5$ black dashed, $\Delta \sim 10$ black solid

- <η> ~ 277 at z~3
- 210 < η < 285 in 80% volume,
 δρ/<ρ> ~ 10-20% fluctuations.
- δρ/<ρ> up to 60% in 20% volume.

Fluctuations in T

- Calculated self-consistently with H,He, metal cooling.
- Evident spatial correlation T(Δ)
- Metal cooling efficient in few percent of volume (Z >0.5ZSol) introduces scatter.

Scatter plot of T(Δ) at t~5.5 10⁶ yrs. <T(Δ)> in red crosses.

 $\Delta \sim 0.5$ cyan solid line, $\Delta \sim 1$ white solid line, $\Delta \sim 5$ black dashed, $\Delta \sim 10$ black solid

- **<T> ~** 3.2 10⁴ [K] at z~3
- $\delta T/\langle T \rangle \sim 10\%$ in $\Delta < 1$.
- $\delta T/\langle T \rangle$ up to 40% in $\Delta > 1$.

Fluctuations in ζ_{obs}

 Calculated in photo-ionisation equilibrium as:

$$\zeta_{obs} \equiv \frac{\tau_{\rm siiv}}{\tau_{\rm civ}} \sim \frac{\sigma_{\rm siiv} n_{\rm sii} x_{\rm siiv}}{\sigma_{\rm civ} n_{\rm ci} x_{\rm civ}} \sim 1.7 \frac{x_{\rm siiv}}{x_{\rm civ}} 10^{[\rm siiv/civ] - 0.77} \quad [2]$$

• Sensitive both to spectral shape and [SiIV/CIV].

Scatter plot of [Si/C]. {0.001-0.01} red points. {0.01-0.1} green, {0.1-0.5} blue, {0.5-1} pink.

- <[Si/C]> ~ 0.77 at z~3 (see Aguirre 04)
- 0.4 < [Si/C] < 0.8 in 0.1 < ∆ < 10. It scatters with the gas metallicity Z.
- ζ^{-1} increases with Δ : $8 \rightarrow 48$
- ζ⁻¹ shows a scatter from 20 to 40% only around ζ⁻¹ ~8.

Fluctuations in ζ_{obs}

- Clear decreasing trend with Δ
- Scatter increases from 25% up to 50% at Δ ~10.
- Associated with metallicity: 0.1 < Z/Z sol < 0.51.4 $\Lambda > 7.0$ $\Delta < 0.07$ 1.2 $1.5 < \Delta \le 7.0$ 1 0.8 % cells 0.6 0.4 0.2 0 0.05 0.1 0.15 0.2 0.25 0.3 0 ζ_{obs}
 - Statistics of ζ_{obs} at t~5.5 10⁶ yrs in different overdensity systems as indicated by colours in legend.

Scatter plot of ζ_{obs} at t~5.5 10⁶ yrs. Colours indicate the metallicity of the systems as in legend.

- Under-dense regions statistically irrelevant.
- Fluctuations of ζ_{obs} up to 40% in less than 0.15% volume.
- Fluctuations ~ 15% in ~3% volume.

Why?

- The shaping is a function of Δ. It is well traced by fluctuations of η and T.
- CRASH is sensitive to fluctuations of metal ions (ζ⁻¹) derived from the UVB shaping.
- Metal enriched domain in which Z>0.1Zsol reduced to 7% of total.
- Mechanical Feedback de-correlates Z- ∆ reducing the available volume in which shaping is relevant.

- Fluctuations of ζ_{obs} up to 40% in less than 0.15% volume.
- Fluctuations ~ 15% in ~3% volume.

Conclusions

- RT induces fluctuations up to 40% in η and T.
- RT induces also fluctuations in metal component tracked by ζ_{obs} but visible in few % of volume.

but.....

- Other metal tracers to investigate: OVI.
- Effects galaxy variability in small scales: dominate the ionisation of metals or induce fluctuations ?
- Is the large scale background produced by QSOs homogeneous? Does it fluctuate? How is this affecting the small scales?

Cosmic UV background fluctuations at z~3 as traced by metal ions: radiative transfer effects

L. Graziani, B. Ciardi

Max Planck Institute for Astrophysics

THANK YOU

Reionisation in the Red Center, Uluru - 14-19.06.2013

