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ABSTRACT
We present a new technique for the statistical evaluation of the Tully-Fisher relation
(TFR) using spectral line stacking. This technique has the potential to extend TFR
observations to lower masses and higher redshifts than possible through a galaxy-by-
galaxy analysis. It further avoids the need for individual galaxy inclination measure-
ments.

To quantify the properties of stacked H i emission lines, we consider a simplistic
model of galactic disks with analytically expressible line profiles. Using this model,
we compare the widths of stacked profiles with those of individual galaxies. We then
follow the same procedure using more realistic mock galaxies drawn from the S3-SAX
model (a derivative of the Millennium simulation). Remarkably, when stacking the
apparent H i lines of galaxies with similar absolute magnitude and random inclinations,
the width of the stack is very similar to the width of the deprojected (= corrected
for inclination) and dedispersed (= after removal of velocity dispersion) input lines.
Therefore, the ratio between the widths of the stack and the deprojected/dedispersed
input lines is approximately constant – about 0.93 – with very little dependence on
the gas dispersion, galaxy mass, galaxy morphology, and shape of the rotation curve.

Finally, we apply our technique to construct a stacked TFR using HIPASS data
which already has a well defined TFR based on individual detections. We obtain a
B-band TFR with a slope of −8.18 ± 0.61 and a K-band relation with a slope of
−11.23 ± 0.76 for the HIPASS data set which is consistent with the existing results.

Key words: galaxies: evolution – radio lines: galaxies – galaxies: fundamental pa-
rameters – galaxies: kinematics and dynamics – galaxies: spiral – (cosmology:) dark
matter

1 INTRODUCTION

Galaxy scaling relations form an important part of extra-
galactic astrophysics as they encode the different evolu-
tionary processes experienced by galaxies, and often serve
as important observational tools. The Tully-Fisher relation
(TFR), an empirical relation between the absolute magni-
tude and rotation velocity of spiral galaxies, is one of the
most important of these as it links their dark and luminous
matter components, as well as providing an important dis-
tance estimator in cosmology (Tully & Fisher 1977; Springob
et al. 2007; Masters 2008). Observations of the evolution
in the TFR can potentially discriminate between different
evolutionary models of spiral galaxies (Obreschkow et al.
2009a). Although TFR studies can be done in optical (Miller
et al. 2012; Puech et al. 2008), the most accurate method
for determining rotational velocities for TFRs is through the
direct detection of atomic hydrogen (H i, 21 cm rest-frame),
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since this gas probes larger galactocentric radii than opti-
cal light, hence better tracing the asymptotic velocity (if it
exists) of the rotation curve. However, given the technolog-
ical difficulty of detecting distant H i – the current distance
record being at redshift z = 0.2454 (Catinella et al. 2008) –
TFR studies using this method are still limited to the local
Universe (z < 0.1). For gas evolution studies, H i stacking
has been successful in extending the redshift range accessible
by measuring a statistical signal (Lah et al. 2007; Delhaize
et al. 2013; Rhee et al. 2013), a method we now explore for
studying the TFR.

In this paper, we describe the technique for recovering
the TFR using stacked H i profiles. Section 2 provides back-
ground information on the idea and benefits of H i stacking.
Section 3 uses analytical H i profiles to assess how the widths
of stacked profiles are related to the widths of the input pro-
files. All of the profiles used in Section 3 were generated from
identical galaxies with different inclination projections. This
relationship is further investigated in Section 4 using a dis-
tribution of non identical and more realistic mock galaxies
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from the S3-SAX simulation (Obreschkow et al. 2009a,b),
which allows us to model volume and sensitivity-limited sur-
vey scenarios. Finally in Section 5 we use our method to cre-
ate a stacked TFR from real HIPASS data and compare it
to the relation derived from individual detections by Meyer
et al. (2008).

2 H I STACKING

2.1 Introduction to H I stacking

Stacking consists of adding or averaging the rest-frame
spectra of multiple galaxies to produce one ‘stacked spec-
trum’. This approach is particularly interesting if the indi-
vidual spectra are too noisy to reveal features such as emis-
sion lines. Assuming Gaussian noise, stacking increases the
signal-to-noise as

√
N . Given a sufficiently large input sam-

ple, stacking uncovers the otherwise hidden 21 cm profile
and enables a statistical flux or H i mass measurement. In
the context of the TFR, stacking should allow a measure-
ment of the average rotation velocity of galaxies that are too
distant or low in mass to be detected directly in H i emis-
sion given the flux limit of the observation. While it is clear
that the flux (or mass for mass-averaged spectra) of a stack
equals the average flux (mass) of the galaxies used in the
stack, it is not obvious that the width of galaxy H i profiles
is conserved in stacking. For this work, all of our spectra are
mass-averaged spectra.

One of the challenges of the stacking method is that it
requires the input spectra in their rest-frame, so that emis-
sion lines from the same transition add up constructively.
In the case of the mock galaxies discussed in Section 3 and
Section 4, we naturally have access to rest-frame H i spectra,
since the intrinsic properties of the mock galaxies are known
by construction. In the case of observed H i spectra, such as
in the HIPASS data, we must first shift all galaxy spectra
back to their rest-frame by using their redshifts. Since we
are only using the direct detections from the HIPASS cat-
alogue, we get this redshift information directly from the
21 cm profile. Stacking is done by taking the mean of the
individual spectra in each frequency bin.

2.2 Using stacked H I lines for TF science

The fundamental axis of the TFR represents the rotation
velocity of galaxies. The precise meaning of this rotation ve-
locity can be ambiguous, especially in galaxies with rotation
curves that do not converge toward a constant velocity with
increasing radius. In this paper, we will not enter a discus-
sion on different definitions of rotation velocities (e.g. Vmax,
Vflat, W50/2, W20/2) and on how they relate to the circu-
lar velocity and the mass of the halo. Instead, we explore
how H i stacking can be used to recover a TFR, within a
fixed definition of the rotation velocity. We chose to define
this velocity as half the width W50 (measured at 50% of the
peak flux) of the H i emission line of a galaxy, if this galaxy
were seen edge-on and had no dispersion in the H i gas. To
measure this velocity from an observed H i emission line, the
line profile has to be dedispersed (= removal of dispersion)
and deprojected (= corrected for inclination). We label the
dedispersed and deprojected line width W ind

50 . The velocity

to be plotted on the TFR is then W ind
50 /2. In the case of a

sample of galaxies with similar intrinsic rotation curves, we
define the global average line width, W ref

50 , as the H i-mass
weighted geometric average of the individual values (more
on this in Section 4)

The leading question of this paper is, how can a stacked
H i line be used to measure W ref

50 of the stacked galaxies?
More explicitly, how does the 50-percentile width W stack

50 of
the stacked line compare to W ref

50 ? This question is non-
trivial, because H i lines entering the stack are not corrected
for dispersion and inclination. In fact, dispersion correction
is impossible in the case of non-detected lines – the typi-
cal scenario of stacking. Inclination corrections (applied by
stretching the observed H i profiles in the frequency axis)
could in principle be applied given optical inclinations, but
these are one of the largest sources of error in TFR studies,
as evidenced by the frequent use of an inclination selection
criteria (Meyer et al. 2008; Barton et al. 2001; Lagattuta
et al. 2013), and, as shown in this work, inclination cor-
rections can be bypassed while still maintaining accurate
results. For more work in deriving TFRs without using in-
clinations, see Obreschkow & Meyer (2013). In conclusion,
a leading challenge of this work is to calculate the ratio

F ≡ W stack
50

W ref
50

. (1)

When constructing the TFR from stacked lines, W stack
50 /2

needs to be multiplied by F−1 to obtain the correct velocity
in the TFR. Sections 3 and 4 therefore focus on determining
the value of F in increasingly realistic models.

3 STACKING IDENTICAL MOCK GALAXIES

In this section, we consider the line widths W stack
50 of stacked

emission lines composed of identical, but differently inclined
model galaxies. In other words, all the H i lines in the stack
would look the same if seen edge-on. In this case, the line
width W ref

50 , which we want to recover for the TFR, is simply
the dedispersed edge-on line width of the input galaxies. In
the following we study the ratio F (equation 1) in the case
of a simplistic disk with constant velocity (Section 3.1) and
varying velocity (Section 3.2) rotation, and then investigate
the bias and uncertainty of F if the stack only consists of a
small number of individual lines (Section 3.3).

3.1 Disk galaxy with constant circular rotation
velocity

The first case we investigate uses a simplistic galaxy model.
This model serves as a first approximation to how the spec-
tral widths of stacks relate to the width of the individual
galaxies. We will also use this model to show the effect of
gas dispersion on this relation.

We begin by calculating F using analytical emission
profiles. Galaxies are modelled as disks with constant linear
rotation velocities (not constant angular rotation velocities),
implying normalised edge-on line profiles given by

ρedge
const(v) =

1

π
√

1− v2
, (2)

where v = V/Vmax is the normalised velocity and Vmax is the
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Figure 1. Example spectra generated using equations (2), (4) and (5) for galaxies with low dispersion (red) and high dispersion (blue).

The dashed lines show spectra of edge-on galaxies. The dot-dashed lines show partial stacks containing galaxies between 45◦ and 90◦.
The solid lines show complete stacks containing galaxies of all inclinations.
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Figure 2. The width of stacked profiles normalised by deprojected and dispersed (left) and by deprojected and dedispersed (right)
galaxy widths as a function of the minimum inclination of galaxy spectra included in the stack.

linear velocity of the gas Stewart, Blyth & de Blok (2014). In
this equation, 1/

√
x with x < 0 is taken to be zero to avoid

‘if’ conditions in the equation, and similarly in the equations
that follow. This equation, and the following single spectrum
equations, are normalised such that

∫∞
−∞ dv ρ = 1 ∀ i. To

model an inclined galaxy, we substitute Vmax with Vmax sin i,
where the sin i factor is due to the line-of-sight projection of
the inclined disk. This produces

ρincl
const(v, i) =

1

π
√

sin2 i− v2
. (3)

Note that this equation remains normalised, i.e.
∫
ρincl

const = 1.
A lower i leads to a more narrow but higher line. To simulate
a stacked spectrum, we assumed a sin i inclination distribu-
tion, as expected for an isotropic, homogeneous universe.
The equation describing a stack created in this way is given

by

ρstack
const(v) =

∫ π/2

0

di
sin i

π
√

sin2 i− v2
(4)

The sin i factor in the numerator is a weight that ensures
a sin i inclination distribution expected for random galaxy
orientations in a 3D universe. It is interesting to note that
equation (4) solves to a rectangular top-hat profile of value
1
2

between −1 and +1, and value 0 otherwise (see Appendix)

and thus
∫

dv ρstack
const = 1. Dispersed spectra are created by

convolving ρ(v) (= ρedge
const(v) or ρstack

const(v)) with a Gaussian;

ρ(v, s) =

∫ ∞
−∞

dv′
e−(v−v′)2/2s2

s
√

2π
ρ(v′), (5)

where s ≡ σ/Vmax and σ is the velocity dispersion of the
gas. Because gas dispersion is assumed isotropic, it is im-
mune to inclination effects and can always be added last,
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after changing the inclination of a profile or after creating a
stacked profile.

To tackle in detail how a stacked profile builds up when
successively adding galaxies of different inclinations, let us
consider the partial stack

ρpart
const(θ, v) =

∫ π/2

θ

di
sin i

π
√

sin2 i− v2
, (6)

where θ is the minimal inclination of the stack. Note that
ρpart

const(θ, v) is identical to ρstack
const(v) if θ = 0 and identical

to ρedge
const(v) if θ = π/2 = 90◦. As with the other profiles,

the partial stack can be dispersed via equation (5), giv-
ing the dispersed partial stack ρpart

const(θ, v, s). Examples of
model spectra ρedge

const(v, s) (dashed lines), ρstack
const(v, s) (solid

lines) and ρpart
const(θ = 45◦, v, s) (dash-dotted lines) can be

seen in Fig. 1. ρpart
const has an intermediate profile between

the dispersed full stack (solid lines) and the dispersed edge-
on profile (dashed lines). Equations (2), (4), (5) and (6) are
all normalised (i.e.

∫
ρ di = 1).

Given these expressions of line profiles, we can now ex-
plicitly identify W ref

50 and W stack
50 with the widths of ρedge

const(v)
(without dispersion) and ρstack

const(v, s) (with dispersion s), re-
spectively. Hence, F can be calculated analytically for any
normalised dispersion s. By extension, we can calculate
Fθ = W part

50 /W ref
50 , where W part

50 is the 50-percentile width
of the dispersed partial stack with inclination limit θ. Note
that F0 ≡ F .

Fig. 2 shows Fd
θ and Fθ as a function of the mini-

mal inclination θ for three different normalised dispersions
s = σ/Vmax, covering the typical range. In fact, local galax-
ies typically have a σ value of order 10 km s−1 (Ianjamasi-
manana et al. 2012) and an average Vmax of 50 - 200 km
s−1, hence a value of s between 1/20 − 1/5. The left panel
shows Fd

θ = W part
50 /W ref,d

50 , where W ref,d
50 is the deprojected

spectral width of the galaxy with dispersion. This compari-
son suggests a correction dependent on s is required to both
dedisperse and correct for the stacking process.

The right panel of Fig. 2, however, shows Fθ =
W part

50 /W ref
50 , where W ref

50 is the deprojected and dedispersed
line width for the galaxy. In this sense, we are bundling
the dispersion correction and the stacking correction factor
together. The remarkable result of this analysis is that F
(≡ F0) is virtually identical to 1 for all realistic dispersions:
For galaxies with a fixed circular rotation velocity, the 50-
percentile width of an isotropic stack of H i lines is identical
to the 50-percentile width of the input galaxies, if they were
seen edge-on without dispersion. That is W stack

50 = 2Vmax in
this model.

This result suggests that the best way to measure Vmax

is to stack galaxies of all inclinations. This allows us to mea-
sure Vmax without needing any inclination information and
also gives us the same value regardless of the dispersion in
the galaxies. The values of s used in Fig. 2 should cover
most realistic cases in the local Universe, but even with a
dispersion as large as s = 1/2, F still equals ∼ 1.04.

This investigation using disk galaxies with constant cir-
cular rotation velocities shows the stacking technique has
merit in reproducing the spectral widths needed to construct
the TFR. We now need to investigate more realistic galaxies
to see if any corrections need to be made and track where
those corrections come from.

3.2 Disk galaxy with varying circular rotation
velocity

Assuming all concentric gas rings for the disks described in
Section 3.1 have the same rotation velocity does not accu-
rately describe the inner parts of realistic rotation curves. In
this section we analyse more realistic galaxy models based
on a differential rotation curve of the form

V (r) = Vmax

(
1− e−r/rflat

)
, (7)

where r is the galactocentric radius, rflat is the characteristic
scale length of the rotation curve and Vmax is the asymptotic
velocity as r � rflat.

Given differential rotation, the H i gas is subjected to
different Doppler shifts, depending on where in the rotation
curve this gas lies. Therefore, we now have to specify the
surface density profile ΣHI(r) of the H i gas, unlike in the
case of a constantly rotating disk (Section 3.1). We therefore
adopt the standard model of an exponential disk;

ΣHI(r) =
MHI

2πr2
HI

e−r/rHI , (8)

where rHI denotes the characteristic scale length of the H i
disk. A value of rHI/rflat = 3 is used, corresponding to
the average value from the THINGS catalogue (Leroy et al.
2008).

Adding these two physical profiles to the equations de-
rived in Section 3.1 we get the following equation describing
the emission profile of a single galaxy;

ρedge
diff (v) =

∫ ∞
0

dr
r e−r

π
√

[1− e−3r]2 − v2
, (9)

and for a stack of these galaxies;

ρstack
diff (v) =

∫ π/2

0

di

∫ ∞
0

dr
r e−r sin i

π
√

[1− e−3r]2 sin2 i− v2
(10)

assuming a sin i inclination distribution and normalised ve-
locity v (= V/Vmax). The ‘3’ coefficient in the denominator’s
exponent comes from the ratio of the mass scale radii and
velocity (rHI/rflat). To produce the corresponding ρedge

diff and
ρstack

diff lines with normalised Gaussian velocity dispersion s
(= σ/Vmax), we use equation (5).

Fig. 3 (left) shows a single galaxy spectrum and a
stacked spectrum using equations (2), (4) and (5) (disks
with constant rotation), as well as a single galaxy profile
and a stacked spectrum using equations (9), (10) and (5)
(disks with varying differential rotation).

In order to calculate Fθ (= W part
50 /W ref

50 ) as we did in
Section 3.1, we define the partial stack function as

ρpart
diff (θ, v) =

∫ π/2

θ

di

∫ ∞
0

dr
r e−r sin i

π
√

[1− e−3r]2 sin2 i− v2
, (11)

where θ is the minimal inclination of the stack. Analogous to
equation (6), ρpart

diff (0, v) ≡ ρstack
diff and ρpart

diff (π/2, v) ≡ ρedge
diff .

The partial stack can be dispersed using equation (5) giving
the dispersed partial stack ρpart

diff (θ, v, s). Equations (9), (10)
and (11) are normalised (i.e.

∫
ρ di = 1).

In Fig. 3 (right) we show Fθ as a function of minimal
inclination θ for a range of different normalised dispersions
s = σ/Vmax. This produces a value of F = 0.95± 0.01. The
errors stated in the value of F come from the variation with
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Figure 3. (Left) the emission profile of an edge-on galaxy created with an exponential circular velocity rotation curve and gas mass

profile using equations (9) and (5) shown with a thick dashed line. The thick solid line is the stack of these emission lines as observed at
all possible inclinations weighted by sin i to mimic the inclination distribution expected from an isotropic homogeneous universe. This

emission profile line is created by combining equations (10) and (5). Shown in thin lines is the emission profile of a single galaxy and

a stack of galaxies from Section 3.1 using equations (2), (4) and (5). All profiles were created using a normalised dispersion value of
σ/Vmax = 1/10. (Right) the width of stacked profiles normalised by dispersion-less edge-on galaxy width as a function of the minimum

inclination of the galaxies included in the stack. All stacks were created using equations (10) and (5).

s. This value is slightly smaller than F = 1 for galaxies with
constant rotation in Section 3.1.

We have now established that we expect a 5% offset in
F due to the fact that, when stacked, H i spectra with real-
istic rotation and mass profiles do not produce perfect rect-
angular top-hats. We now investigate the effect low-number
statistics play in stacking.

3.3 Low-number effects

In reality, not every single stack contains a large number of
galaxies, causing deviations from the pure sin i inclination
distribution assumed in Section 3.1 and Section 3.2. Low
number statistics may additionally cause the final stack to
be dominated by a few galaxies with large fluxes. In this
section we assess the impact of these effects on the widths
of stacked H i profiles.

We ran simulations to measure the statistical effects on
F as a function of N , the number of galaxies included in
the stack, using the galaxies described in Section 3.2 (equa-
tions 9, 10 and 5). In these simulations, N galaxies were
selected at random from a sin i inclination distribution. The
galaxies were stacked and the width of the spectrum created
(W stack,N

50 ) was compared to the width of the spectrum cre-
ated using infinite galaxies (W stack,∞

50 ) and W ref
50 to quantify

the errors and F respectively. The N galaxies were re-picked
and stacked 1000 times to gain a statistically significant sam-
ple. This process was repeated withN = 1, 10, 20, 50 and 100
galaxies.

We found a systematic and random error component to
F which are both a function of N . Fig. 4 shows the data from
1000 samples and the functional fit to both the systematic
component (left) and the random component (right). The
systematic shift in F occurs as no combination of galaxies
will create a stack where W stack,N

50 > W stack,∞
50 , but W stack,N

50

can be lower than W stack,∞
50 if edge-on galaxies are missing

from the sample.
Both the systematic and random errors become smaller

with more galaxies, as expected, and both approach reason-
able values as the number of galaxies increases. The system-
atic offset approaches the value for infinite galaxies found in
Section 3.2 (≈ 0.95 for s = 1/10) and the Gaussian scatter
in widths approaches 0. We fit exponential functions;

F = 0.95− 0.12 e−0.08 N − 0.01 e−0.003 N (12)

and

error = 3.2 W stack
50 e−2.0 N0.2

V −1
max, (13)

to the offset and error relations respectively.
The corrections presented in this section are not used in

Section 4.1 as each stack contains several thousand galaxies,
so the corrections are negligible. Section 4.2 onwards do,
however, use equation (12) and include equation (13) in the
error calculations.

4 SIMULATED GALAXIES

In this section we consider the line widths W stack
50 of stacked

emission lines composed of a distribution of different model
galaxies that better represent the diversity of galaxies in the
Universe, rather than simply stacking a single randomly ori-
ented H i profile. To study F (equation 1) we need to define
the line width W ref

50 . As we are no longer using identical
galaxies, W ref

50 is now defined as the mass weighted geomet-
ric average over the dedispersed edge-on line widths of the
galaxies used in the stack. In the next two subsections we
study F , using a volume (Section 4.1) and sensitivity (Sec-
tion 4.2) limited mock sample. We then add noise to our
galaxies in Section 4.3 and investigate how much noise our
technique can cope with.
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Figure 4. Using simulated galaxies like those described in Section 3.2, the above two frames each show a different type of offset in the

spectral stacks as a function of how many galaxies are included in the stack. (Left) the correction factor F , which is a measure of the

systematic offset of W stack,N
50 compared to 2Vmax, was measured for stacks of 1, 5, 10, 20, 50 and 100 galaxies. These measurements were

repeated one-thousand times and the mean offset is shown as black data points. These data were fit using equation (12). (Right) the 1

σ standard deviation of W stack,N
50 from W stack,∞

50 as a function of the number of galaxies per stack. We fit equation (13) to the data.

Both of these samples were generated from the S3-SAX
model Obreschkow et al. (2009b), which is a semi-analytic
model (SAM) for H i and H2 in galaxies. This model builds
on the SAM by (De Lucia & Blaizot 2007), which uses formu-
lae based on empirical or theoretical considerations to sim-
ulate gas cooling, re-ionisation, star formation, supernovae
(and associated gas heating), starbursts, black holes (accre-
tion and coalescence), and the formation of stellar bulges
due to disk instabilities.

4.1 Volume-complete simulated sample

Mass spectra were produced using raw output from the spi-
ral galaxies in the S3-SAX before dispersion effects were
added. Each galaxy was then assigned a random viewing
inclination. No noise was added to these spectra. Spectra
were binned into seven equally spaced magnitude bins with
a width of 1 magnitude. These dispersion-less spectral pro-
files were deprojected, and then had their widths measured.
These widths were weighted by the H i mass of the corre-
sponding galaxy producing the spectrum, and finally geo-
metrically averaged to produce W ref

50 .
Galaxy selection was kept to a minimum to prove the

stacked TFR holds for all types of spiral galaxies with a com-
plete sample of realistic galaxies. The resolution limit of the
Millennium simulation (Springel et al. 2005) is 8.6×108 M�,
which sets the completeness limit for the S3-SAX to MHI +
MH2 ≈ 108 M� (Obreschkow et al. 2009a). Galaxies identi-
fied as ellipticals were excluded, however, only the brighter
galaxies (absolute magnitudes less than approximately −21)
could be morphologically classified, so there were still ellip-
tical galaxies remaining in the data set. Elliptical galaxies
do not make a significant impact in the resulting stacks due
to their lower H i content.

The emission profile of each galaxy was scaled down in
frequency space by a factor of sin i, and the flux density was
scaled up by the same factor, giving each galaxy an incli-

nation dependant spectral profile. These profiles were then
smoothed with a Gaussian corresponding to a dispersion of
σ = 8 km s−1, just as in Obreschkow et al. (2009b). After
being sorted into magnitude bins, galaxies with inclinations
between θ and 90◦ were stacked to create partial stacks. The
width of each partial stack is called W part

50 and W ref
50 is de-

fined as the geometric average of the dedispersed edge-on H i
line widths of the subsample of galaxies included in the par-
tial stack. Fig. 5 (left) shows examples of the stacked spectra
produced, while Fig. 5 (right) shows Fθ (= W part

50 /W ref
50 ) as

a function of θ.

To create a TFR from our stacked spectra, we need to
correct W stack

50 by the correction factor we have found. We
do this by multiplying W stack

50 by F−1. We add a c super-
script (W stack,c

50 in this case) to denote a width corrected
in this way. Due to only small differences in F for differ-
ent magnitude bins, and the lack of any systematic trend, a
global value for the correction factor was used. This value,
which can be read from Fig. 5 (right), is F = 0.93 ± 0.01,
which approximately agrees with the value of 0.95 ± 0.01
found in Section 3.2 using a simplistic analytical galaxy
model. Hence, our calibrated width W stack,c

50 is given by
F−1W stack

50 = W stack
50 /0.93.

Fig. 6 (left) is a density map consisting of individual
galaxies from the S3-SAX simulation. The position of an
individual galaxy on the TFR is determined by its K-band
absolute magnitude, and its dispersion-less edge-on W50. In-
dividual galaxies are represented by a density map while
the corrected (Vrot = F−1W stack

50 /2, F = 0.93) and un-
corrected (Vrot = W stack

50 /2) stack widths are displayed in
blue and white diamonds respectively. Both stacked data
sets use the average K-band absolute magnitude of the in-
dividual galaxies as their K-band absolute magnitudes. The
black circles give an idea of where our values of W ref

50 lie on a
TFR with respect to the underlying galaxy population they
are derived from. The corrected values W stack,c

50 , show very
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good agreement with both W ref
50 and the underlying galaxy

distribution.

A second simulated subset was used which did not in-
clude an elliptical galaxy cut, shown in Fig. 6 (right). The
inclusion or exclusion of the known elliptical galaxies in
this data set makes little (< 1%) difference in the width of
stacked data points, despite accounting for up to 62.7% of
the galaxies in some stacks. This is easily seen by comparing
the small red diamonds (stack widths that include elliptical

galaxies) to the blue diamonds (which are identical to those
from Fig. 6, left).

4.2 Sensitivity-limited simulated sample

We next investigate an H i sensitivity-limited observational
subset of the S3-SAX, allowing us to make a comparison
with the HIPASS data. To this end, five simulations were
created using the HIPASS selection function.
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galaxies: The dashed line is the inclination distribution for the
complete Millennium box which follows a sin i inclination distri-
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solid blue line is the inclination distribution for the simulated
HIPASS samples (the sensitivity-limited sample used in Sec-

tion 4.2).

To create these five simulations, the cubic simula-
tion box of the Millennium simulation was divided into
five, non-overlapping HIPASS-like volumes, as explained in
Obreschkow et al. (2013, Section 2.2 & Fig. 3) containing be-
tween 3475 and 4260 galaxies. The selection function in the
model is as follows: Galaxies had to be within the declination
limits of southern HIPASS (δ < 2◦) and they had to have a
velocity within the HIPASS velocity range of 12 700 km s−1.
The probability of selecting a galaxy that satisfied these
conditions was equal to the HIPASS completeness function
(Zwaan et al. 2004) which depends on the integrated flux
and peak flux density.
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Figure 9. The Tully-Fisher relation for a simulated HIPASS cre-

ated using the S3-SAX galaxies. Each of the 4260 red data points

represents a galaxy on the Tully-Fisher plane with a rotation
velocity given as the half-width at half-height of the emission

spectra without dispersion effects. The white diamonds are the

half-width at half-height of the stacked spectra while the blue di-
amonds have been corrected by the factor given in equation (12)

which for most stacks was F−1 = 0.95−1. Error bars are omit-

ted as they are smaller than the data points. The red line is the
average fit to the individual galaxies (red crosses) across all five

HIPASS simulations, while the blue line is the average fit to the
stacked data points (blue diamonds) across all five simulations.

The slope and offset values listed are of the form used in equa-

tion (14).

The galaxies in each of these simulations were binned
into bins of equal width in absolute K-band magnitude and
their mass spectra stacked. Examples of these stacked spec-
tra can be seen in Fig. 5 (left). The widths of these stacked
profiles were measured producing W stack

50 for each bin. In ad-
dition to these widths, dispersion-less inclination-corrected
individual galaxy profiles were generated and their widths
were geometrically averaged to produce W ref

50 for each bin.
Using these widths, we can calculate Fθ, and thus plot Fθ
versus θ, the minimum inclination angle of galaxies used
in a stack (Fig. 7). From this figure, it can be seen that
the sensitivity-limited data sets require a correction factor
F = 0.935 ± 0.005 which agrees with both the analytical
galaxies with differential rotation from Section 3.2, and the
volume-complete sample from Section 4.1. Another impor-
tant point to note from this figure is, just like Fig. 5, at
θ = 0, the scatter between the bins is not systematically
linked with magnitude or s. Due to F ’s similar value to the
asymptotic value from equation (12), this equation was used
for the correction factor for the TFR.

The main difference in the volume-complete data set
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and this sensitivity-limited data set is the different inclina-
tion distributions. The volume-complete sample of galaxies
follow a sin i inclination distribution, while by comparison,
the HIPASS simulations have an over abundance of face-on
galaxies and less edge-on galaxies (shown in Fig. 8). This is
due to Speak being a function of inclination. Surprisingly, the
HIPASS inclination distribution does not change the value of
F compared to the value calculated when considering data
from a sin i distribution.

The galaxies in the sensitivity-limited data set were
then plotted on a TFR. This was done by first creating ob-
served (inclined and dispersed) spectra for each of the galax-
ies. The resulting spectra were then stacked within their as-
signed magnitude bins. Each stack had W stack

50 measured,
and corrected using F from equation (12). The rotation ve-
locity was calculated from this corrected width (W stack,c

50 )
as W stack,c

50 /2. This Vrot is the value used – along with the
average magnitude of the galaxies in the stack – to create a
blue data point for Fig. 9.

Whilst creating data points for individual galaxies on
the TFR, we use dispersion-less, edge-on rest-frame spectra.
We then measure W ind

50 for each galaxy. The rotation ve-
locity of the galaxy is then calculated as W ind

50 /2 and used,
along with the absolute magnitude, to place it on the TFR
as a red data point (Fig. 9). Only one realisation of the
HIPASS simulation is shown, however, the fits to the data
shown are the mean values across all five HIPASS realisa-
tions. Similarly, the errors in these parameters, shown as
shaded regions, are calculated as the standard error in each
parameter across all five realisations. Fits were done using
the R package hyper.fit (Robotham & Obreschkow 2015)
The slopes and offsets for the fitting equation

Mk = offset + slope× log10 V (14)

are summarised in the table of Fig. 9.
We have established that with a correction value, F ,

given in equation (12), stacking can reproduce the TFR for a
sensitivity-limited sample. We now investigate a sensitivity-
limited sample with artificially introduced noise to demon-
strate the power of HI stacking when applied to non-
detections.

4.3 Gaussian noise

Using the same galaxies from section 4.2, we introduced
Gaussian noise into the simulation. We varied this noise to
see how well the TFR is recovered from stacks with decreas-
ing signal-to-noise ratios.

To achieve this, we added an equal level of noise to
all galaxies in the observers frame. All noise values are
presented in multiples of 13 mJy beam−1 to allow for di-
rect comparison with the results from the HIPASS dataset
(Meyer et al. 2004). We also removed all resolved galax-
ies (those with diameters larger than the HIPASS beam).
This eliminated extreme outliers, allowing the number of
galaxies directly detected prior to stacking to fall to zero
over the signal-to-noise range probed. The velocity resolu-
tion was dropped to 13 km s−1 to more closely mimic that
of HIPASS at 13.2 km s−1 (Meyer et al. 2004).

After each galaxy had the appropriate level of noise
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Figure 10. Noise is plotted on the x-axis in multiples of the

HIPASS noise (13mJy beam−1) from 0.1× to 50× in increments
of 0.1×. The black line corresponds to the left axis, showing the

mean percentage of galaxies detected in a stack of Milky Way-

sized galaxies (Mk ≈ −21) and one standard deviation from the
mean of the five HIPASS volumes shown as a grey shaded re-

gion. The red line corresponds to the right axis showing the mean

signal-to-noise ratio of stacks containing Milky Way-sized galax-
ies. One standard deviation from the mean is shown as a red

shaded region. The red dotted line intersects at a signal-to-noise

of 10 corresponding to the noise used for the Tully-Fisher rela-
tion in Fig. 12 It can also be used to find the percentage of Milky

Way-sized galaxies directly detectable in this sample (0.9%).
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added, the noisy H i spectra were stacked in their appropri-
ate magnitude bins. The width of these stacked spectra were
measured by fitting the profile described in equations (10)
and (5) from section 3.2, leaving the width and height as
fitting parameters. W stack

50 was directly measured from this
fitted profile. The signal-to-noise was also measured for each
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(individual galaxy measurements made without noise) across all
five HIPASS realisations The blue line is the mean best fit line for

stacks from the five realisations of HIPASS and the blue shaded

region represents the error in the slope and offset of this fit from
the five realisations.

stack. This process was repeated for noise levels from 0.1×
to 50× the HIPASS noise level in 0.1× increments.

Fig. 10 shows the percentage of directly detected galax-
ies as a function of the noise level in the simulation (black).
It also shows the signal-to-noise of the stack as a function
of the noise in the simulation (red). The data for both the
black and red regions were taken from galaxy bins with ab-
solute magnitudes around −21. The red dashed line shows
the noise level where the mean stack signal-to-noise of the
five simulated HIPASS volumes drops to 10, approximately
14.5× the HIPASS noise. At this level of noise, despite only
0.9±+0.9% of galaxies being detected individually at a∼10σ
level, we can still reliably recover the width of the stacked
spectrum (Fig. 11) needed for Tully-Fisher purposes (indeed,
the mean recovered profile width for the noisy stacks devi-
ates less than 1% from its noise-free equivalent down to a
signal-to-noise ratio of 5, although scatter in the recovered
widths does increase substantially below a signal-to-noise of
10). Fig. 12 demonstrates this point directly, showing the
ability of HI stacking to reliably recover the TFR for the
simulated data with 14.5× the noise of HIPASS. We note
that as such, the results of this simulation indicate that HI
stacking could have been used to recover the Tully-Fisher re-
lation from a survey taking just 0.5% of the observing time
used for HIPASS.

The above ability of H i stacking to reliably recover the
TFR from noisy H i datasets where the direct detection of
sources is difficult also shows the potential of this technique
to be applied in other noise-limited regimes, such as the
study of the Tully-Fisher relation at higher redshifts or lower
H i masses.

We now turn our attention towards the real HIPASS
dataset to measure the TFR.

5 HIPASS ANALYSIS

Finally we test our derived correction factor F on the
HIPASS data set and compare the stacked TFR to the TFR
created using the HOPCAT galaxies.

Galaxies were selected from the H i Parkes All-Sky Sur-
vey (HIPASS) Catalogue (HICAT) using the same method
as (Meyer et al. 2008). HIPASS is a blind H i survey created
using the 64 meter radio telescope in Parkes, NSW, Aus-
tralia. HICAT contains 4315 galaxies from the entire south-
ern sky with declination δ < 2 and velocities in the range v =
300 to 12 700 km s−1. For more information about HICAT,
see Meyer et al. (2004); Zwaan et al. (2004).

Galaxy positions were found by Doyle et al. (2005) by
centring a 15-arcmin SuperCOSMOS image on the HIPASS
locations. Overlaid on the image were galaxies found us-
ing SExtractor and galaxies in the NASA Extragalactic
Database (NED) and 6dFGS. Optical matches were manu-
ally chosen from the available galaxies. The resulting galaxy
match catalogue is called HOPCAT (the HIPASS Optical
Catalogue). Full HOPCAT details can be found in Doyle
et al. (2005). The galaxies in HOPCAT are taken to be the
location of the galaxies, however, for optical magnitudes, the
ESO-LV catalogue was used (Lauberts & Valentijn 1989).

Near-infrared galaxy data was gathered from the Two
Micron All Sky-Survey (2MASS) Extended Source Cata-
logue (XSC). This data set covers J (1.11-1.36 µm), H (1.50-
1.80 µm) and Ks (2.00-2.32 µm) bands. 2MASS has a 23
arcsec resolution with 1 arcsec pixels. The 1σ background
noise is 21.4 mag arcsec−2 in the J band, 20.6 mag arcsec−2

in H and 20.0 mag arcsec−2 in Ks. For more information
about this data set see Jarrett et al. (2003) and Cutri et al.
(2006). The HOPCAT galaxies were matched to the closest
galaxy in the 2MASS catalogue.

Galaxies used for stacking were selected as in Meyer
et al. (2008). We wished to keep any selection cuts to a
minimum, so we only included one selection cut; an exclu-
sion of galaxies outside 20◦ from the equator in the cosmic
microwave background (CMB) frame. Once stacks were cre-
ated, we cut any stacks with less than 5 galaxies, due to large
errors. The galaxies from our comparison sample were also
selected as in Meyer et al. (2008), however a 45◦ inclination
cut was introduced, as the error in rotation velocities due
to the inclination correction is very large for more face-on
galaxies.

All galaxies with ESO-LV optical magnitudes are sepa-
rated into equally spaced magnitude bins and stacked. Each
bin is chosen to be roughly 1 magnitude in width to match
all the previous work. We measured W stack

50 for each of the
stacked spectra and corrected them by the correction factor
(F) calculated from equation (12). In the table accompany-
ing Fig. 13 we show the slope and offset calculated from our
two data sets using the hyper.fit package in R (Robotham
& Obreschkow 2015).

The B-band stacked relation agrees well with the in-
dividual galaxy relation, however has larger errors. The K-
band stacked relation is in poorer agreement with the fit to
the corresponding K-band comparison sample, but they still
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Band Relation Slope Offset # of galaxies

B Stacked −8.2± 0.6 −2.61± 0.08 253

B Individual −8.1± 0.3 −2.84± 0.05 409

K Stacked −11.2± 0.8 1.5± 0.1 253
K Individual −10.8± 0.4 0.29± 0.07 391

Figure 13. The Tully-Fisher relation in B-band (left) and K-band (right) for both the stacked and individual relations. HIPASS galaxy

stacks are plotted as white diamonds on a Tully-Fisher plot. The plot shows average magnitude versus rotation velocity. The corrected

stack widths (W stack,c
50 = F−1W stack

50 ) are also plotted as blue diamonds. Individual galaxies are plotted with errors in red. There is a
solid red line fit to the individual galaxies, as well as a blue line for the corrected stack points with the error indicated by the blue and

red shaded regions. The slope and offset are of the form in equation (14).

agree with one another, which is significant considering how
poor the data are.

The HIPASS galaxies included in our stacks have a dif-
ferent inclination distribution to the assumed sin i function.
Although the stack widths appear to be robust to inclina-
tion distribution, as shown in Section 4.2, it may have had
a more significant effect on this smaller data set.

6 CONCLUSION

The goal of this paper is to see if the same TFR is recovered
using an H i stacking method than when using each galaxy
individually. To that end, we stack progressively more real-
istic galaxies, the results of which are summarised below.

Identical mock galaxies

We create mock galaxies with constant and identical cir-
cular velocity (not solid rotators) and differential circular
velocity (equations 2 & 9) seen under random inclinations
and smoothed by a dispersive component. Stacking the H i
emission lines of these simple galaxies (equations 4 & 10)
allows us insight into the measurement of rotation velocities
from stacked line profiles.

Constant circular rotation

• We find that the width of a stacked H i line profile
W stack

50 is exactly identical to the width of the non-
dispersed, edge-on profiles W ref

50 of the individual galax-
ies; hence F = W stack

50 /W ref
50 = 1 in this simplistic

model.

• We find that F is robust to the magnitude of gas dis-
persion included in our simulated galaxy.

• We show that average rotation velocity can be recov-
ered from a sample of galaxies without ever needing to
measure the inclination angle of the galaxies.

Differential circular rotation

• Upon adopting a more accurate model for the H i disk,
with differential (linear) rotation, the width of a stacked
H i line, again composed of galaxies with identical edge-
on H i profiles, becomes slightly smaller, such that F =
0.95± 0.01.

Simulated galaxies

Using a volume-complete sample of simulated galaxies from
the S3-SAX simulation gives us a more realistic set of
galaxies, and the sensitivity-limited subsample mimics the
HIPASS selection function to give us insight into how our
method behaves with even more realistic data sets. The
volume-complete and sensitivity-limited simulations differ
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from the above identical mock galaxies as all the galaxies
used now have different edge-on profiles.

Volume-complete

• We create stacks of all galaxies in K-band bins that are
1 magnitude wide and measure a value of F = 0.93 ±
0.01 for the volume-complete simulation. This is very
close to the value of F = 0.95±0.01 we measured from
the galaxies with differential rotation velocity profiles.

• The effect of including or excluding non-spiral galaxies
into our samples makes little (< 1%) difference to the
measured W stack

50 .

Sensitivity-limited

• We found from the sensitivity-limited subsample of the
S3-SAX simulation (mimicking the HIPASS selection)
that the correction factor given in equation (12) works
well for stacks with a few hundred galaxies.

• We also showed that the standard method of deriv-
ing the TFR from individual galaxies and our stacking
method agree with each other for five independent data
sets.

Gaussian noise

• We have shown that by increasing the noise in the
sensitivity-limited subsamples of the S3-SAX simula-
tion, we can reliably recover the TFR using stacking
at a noise level where less than 1% of the galaxies are
detected individually.

• Using the stacking technique demonstrated in this pa-
per allows us to measure TFR parameters with the
same accuracy as traditional techniques, while reducing
observation time by up to 99.5%.

HIPASS

The stacking method used to derive the TFR was compared
to the standard method used in Meyer et al. (2008) using
individual galaxies.

• In the B-band, the stacked relation matches quite well
with the relation derived from a galaxy-by-galaxy anal-
ysis.

• The stacked TFR was found to be steeper in the K-
band, but still within errors of the galaxy-by-galaxy
analysis.

We show that with an H i selected data set and no
knowledge of the individual galaxy inclinations, or even the
inclination distribution of the data, the TFR can be recov-
ered via the spectral stacking technique we investigated. In
our next publication we will extend this further by extract-
ing radio data centred on the 6dFGS galaxies and testing
the stacking technique on a sample of non-detections for po-
tential application of this technique at higher redshifts.
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APPENDIX A: SOLUTION FOR ISOTROPIC
STACK OF THE BASIC MODEL

We are interested in an analytical closed-form solution of
equation (4) describing the case of an isotropic stack of ide-
alised emission lines from flat, axially symmetric, transpar-
ent disk galaxies with circular orbits at a constant velocity
Vmax and no dispersion. To solve this equation, let us first re-
member that such a stacked emission line comes about when
observing an equal amount of material flying in every direc-
tion at a fixed velocity Vmax. Therefore the situation is equiv-
alent to observing a single spherical shell of uniform surface
density expanding at Vmax. Because the observer only sees
the velocity component along the line-of-sight, the profile
ρstack

const(v) is then equal to the 1D-density profile resulting
from projecting the surface of a unit-sphere onto a straight
line. Upon parametrising this surface in spherical coordi-
nates with longitude φ ∈ [0, 2π] and latitude θ ∈ [−π/2, π/2]
such that v = sin θ, we obtain

ρstack
const(v) =

1

4π

∫ 2π

0

dφ cos θ
dθ

dv

=
1

2
cos(arcsin v)

dθ

dv

=
1

2

√
1− v2

√
1− v2

=
1

2
.

(A1)

This equation is valid on the interval v ∈ [−1, 1] covered
by the projection of the unit sphere. Outside this interval
the projection vanishes, hence ρstack

const(v) = 0. In conclusion,
the profile of an isotropic stack of galaxies rotating at a
constant velocity Vmax is a top-hat bounded between V ∈
[−Vmax, Vmax].

APPENDIX B: DERIVATION OF EDGE-ON
EMISSION LINE PROFILES FOR
DIFFERENTIAL CIRCULAR VELOCITY

To derive the emission line profile of an edge-on galaxy with
differential circular velocity (equation 9), we start with the
equation describing a line profile for an edge-on disk with
constant circular velocity (equation 2). We then change the
constant velocity profile to

V (r) = Vmax

(
1− e−r/rflat

)
. (B1)

Since this velocity is now a function of r, the distribution of
mass within the disk now affects the shape of the emission
line. We use a simple exponential surface density given by

ΣHI(r) =
1

2πr2
HI

e−r/rHI , (B2)

when normalised to the H i mass. Replacing Vmax in equa-
tion (2) with equation (B1) and integrating over mass, we
get

ρedge
diff (v) =

∫ ∞
0

dM(r)
1

π

√[
V (r)
Vmax

]2
− v2

, (B3)

where dM(r) = dA ΣHI(r) = rdr e
−r/rHI

r2HI
. Thus,

ρedge
diff (v) =

∫ ∞
0

rdr

r2
HI

e−r/rHI

π

√
[1− e−r/rflat ]2 − v2

. (B4)

Using the substitution r′ = r/rHI and rHI/rflat = 3, consis-
tent with the regular disks in the THINGS catalogue (Leroy
et al. 2008), into equation (B4), we finally end up with

ρedge
diff (v) =

∫ ∞
0

dr′
r′e−r

′

π

√
[1− e−3r′ ]

2 − v2

. (B5)

This paper has been typeset from a TEX/ LATEX file prepared
by the author.
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