RECENT RESULTS ON COSMIC REIONIZATION FROM PAPER

Jonathan Pober, UC Berkeley

Reionization in the Red Centre 07/17/13

The Donald C. Backer Precision Array for Probing the Epoch of Reionization

U. Virginia / NRAO

- Rich Bradley
- Chris Carilli
- Pat Klima
- Nicole Gugliucci
- Chaitali Parashare

UC Berkeley

- Aaron Parsons
- Jonathan Pober
- Zaki Ali
- Dave DeBoer
- Dave MacMahon
- Adrian Liu
- Gilbert Hsyu

<u>U. Pennsylvania</u>

- James Aguirre
- David Moore

Arizona State U.

Daniel Jacobs

South Africa

- Carel van der Merwe
- Jason Manley
- William Walbrugh

Outline

- 21cm Cosmology and the Epoch of Reionization
- The PAPER Experiment Design
- The PAPER Approach (explained graphically)
- Recent Results from PAPER
 - Measurements of foregrounds
 - Constraints on the EoR Power Spectrum
- Future Prospects and Conclusions

21CM COSMOLOGY

Scientific Motivation and Techniques

Hydrogen

- The most abundant element in the universe
 - 75% of all baryons by mass
- Ionization potential of 13.6 eV
- Hyperfine splitting energy differential of 5.9 × 10⁻⁶ eV
 - v = 1420 MHz
 - $\lambda = 21 \text{ cm}$
 - T = 0.068 K

 Describe relative population of hyperfine state with spin temperature:

$$\frac{n_1}{n_0} = \overset{\mathcal{R}}{\underset{\mathsf{e}}{\mathsf{g}}} \frac{g_1}{g_0} \overset{\mathsf{o}}{\underset{\mathsf{o}}{\mathsf{g}}} e^{(-T_*/T_S)}$$

Fluctuations

- Spatial variations in $T_{\!_S},\,x_{\!_{HI}}$, and δ all source brightness temperature fluctuations around the global signal
- Describe spatial fluctuations in Fourier space with power spectrum

Epoch of Reionization

$$\mathcal{C}T_b \gg 9 \mathbf{x}_{HI} (1+\mathcal{C})(1+z)^{1/2} \stackrel{\acute{e}}{\underset{i}{\oplus}} 1 - \frac{T_g(z) \stackrel{\acute{u}\acute{e}}{\underset{i}{\oplus}} \frac{H(z)/(1+z) \stackrel{\acute{u}}{\underset{i}{\oplus}}}{dv_{\parallel}/dr_{\parallel}} \stackrel{\acute{u}}{\underset{i}{\oplus}} mK$$

- UV photons from first galaxies reionize intergalactic hydrogen
- 21cm can measure:
 - Duration and timing of EoR
 - Clustering of ionizing sources

Figure adapated from Mao et al. (2008), Podevin illustration in Scientific American

Detecting the Signal

Signal is faint

- Long integrations and large collecting areas required
- Foregrounds are orders of magnitude brighter
 - Separate from 21cm signal using spectral smoothness

Supernova Remnant

Extragalactic Radio

200

175

150

125

100

75

50

25

0

Galactic Plane

THE PAPER EXPERIMENT

Design, Status and Results

- Array of dual-polarization, nontracking dipole elements
- Sensitivity from 110 to 180 MHz (z ≈ 7-12) in 1024+ frequency channels
- Full correlation of all dipoles with CASPER FPGA/GPU architecture
- Store all raw visibilities for later analysis

- PGB-4: 2004
- PGB-8: 2006
- PGB-16: 2008
- PGB-32: 2010

• PSA-16: 2009

- PSA-32: 2010
- PSA-64: 2011
- (PSA-128: 2013)

- PGB-4: 2004
- PGB-8: 2006
- PGB-16: 2008
- PGB-32: 2010

- PSA-16: 2009
- PSA-32: 2010
- PSA-64: 2011
- (PSA-128: 2013)

- PGB-4: 2004
- PGB-8: 2006
- PGB-16: 2008
- PGB-32: 2010

- PSA-16: 2009
- PSA-32: 2010
- PSA-64: 2011
- (PSA-128: 2013)

- PGB-4: 2004
- PGB-8: 2006
- PGB-16: 2008
- PGB-32: 2010

- PSA-16: 2009
- PSA-32: 2010
- PSA-64: 2011
- (PSA-128: 2013)

THE PAPER APPROACH

Redundancy and the "Delay Spectrum"

u,v: interferometer sampling plane m, ℓ: sky plane

A Pictorial View of the PAPER Pipeline

Delay/Delay-Rate Transforms (Parsons & Backer 2009)

Data "Compression"

- DDR space divides into regions with delays/delay rates "on" and "off" sky
- Retain only "on" sky portions
- Be conservative with delays (they will be your k_{||} modes)
- Potential for further benefit by weighting delay rates "on"-sky

Cleaning up the Power Spectrum

$$P(k_{\parallel},k_{\wedge}) \mid \mu \mid \tilde{V}(t,|\vec{u}|) \mid^2$$

- Cross-multiply redundant, but independent samples
 - Time (JCP, Parsons, et al. 2013)
 - Redundant baselines (Parsons, Liu, et al. 2013)

Parsons, Liu, et al. (2013)

Cleaning up the Power Spectrum $P(k_{\parallel},k_{\wedge}) \mid \mu \mid \tilde{V}(t,|\vec{u}|)^{2}$

Cleaning up the Power Spectrum $P(k_{\parallel},k_{\wedge}) \mid \mu \mid \tilde{V}(t,|\vec{u}|)^{2}$

The PAPER Approach: Take Home Points

Redundant baselines

- Increase power spectrum sensitivity
- Facilitate calibration
- Separate residual systematics from sky-signal
- Wide-bandwidth invaluable for foreground CLEANing/modeling
- Forgoing modes within the horizon greatly reduces calibration challenge (see Adrian's talk this afternoon)

The Wedge

20

0.02

0

0.5

0.4

0.3

0.2

0.1

0.00

 $k_{\parallel} \, [h {\rm Mpc}^{-1}]$

- 4 hours of data from 64-element "imaging" PAPER array in SA
- Power spectra formed from subsequent time samples of each baseline
- Delay spectrum approach yields extremely clean EoR window

40

0.04

60

0.06

 $k_{\perp} [h \mathrm{Mpc}^{-1}]$

JCP, Parsons, et al. (2013)

Long Integration

- 55 days of dualpolarization, 32element "maximum redundancy" PAPER in SA
- 10 MHz band @ 164 MHz (z = 7.7)
- 3 baseline "types"
- Systematic limited at the lowest k's

Parsons, Liu, et al. 2013

Legend:

- Final Result
- Noise Level
- Level Before Removing Systematics
- △ GMRT Results (Paciga et al. 2013)
- EoR Model (Lidz et al. 2008)

X-Ray Heating

- Power spectrum measurement can constrain gas temperature
- PAPER measurements inconsistent with pure adiabatic cooling of IGM

Fiducial

reionization

models

CONCLUSIONS

PAPER Prospects

 New data on disk ~50 more days of PSA-32 ~120 days of PSA-64 	x 1 - 2 x 2+
 New deployments PSA-128 beginning observations this fall 	x 2+
 New techniques "Aggressive" fringe rate filtering Increases SNR "Steers" beam N/S, can help with polarization leakage 	x 3 - 5
 More baselines / earth rotation synthesis Multi-frequency and full-Stokes analyses 	x 1.5 - 2

HERA (Hydrogen Epoch of Reionization Array)

PAPER Dipole

- 14m reflector design significantly boosts PAPER dipole collecting area, better polarization properties
- Short focal length keeps reflections to delays below k-modes of interest
- 547 element sensitivity (left) opens door to next generation EoR science
- Dense array allows for imaging and advanced foreground removal techniques

EXTRA SLIDES

Polarization

- PAPER "naïvely" combines linearly polarized visibilities to make Stokes I
 - Sparse *uv* coverage prohibits beam correction
- xx/yy beam asymmetries create polarization leakage
- Faraday rotated spectra create frequency structure in Stokes I
- Some models approach levels already ruled out by PAPER observations/ Bernardi et al. 2013

The Delay Transform

$$V(u,v) = \hat{0} dl dm A(l,m) I(l,m) e^{-2pi(ul+vm)}$$

$$t_g = \frac{\vec{b} \cdot \hat{s}}{c} = \frac{1}{c} (b_x l + b_y m)$$

$$\vec{u} = (u,v) = \frac{n\vec{b}}{c}$$

$$V(n) = \hat{0} dl dm A(l,m,n) I(l,m,n) e^{-2pint_g}$$

 $\tilde{V}_b(t) = \hat{O} dl dm dn A(l, m, n) I(l, m, n) e^{-2\rho i n(t_g - t)}$

$$\tilde{V}_b(t) = \grave{0} dl dm \grave{e} \tilde{A}(l,m,t)^* \tilde{I}(l,m,t)^* d_D(t_g - t) \grave{e}$$

The Delay Transform

- Fourier transform vs.
 frequency of one baseline
 is *delay transform*
- Sources on the sky map to a geometric delay, convolved with a kernel that is the FT of their spectrum
- 1D per baseline "imaging"

Avoiding Foregrounds in Delay Space

- Horizon imposes maximum delay
- Smooth spectrum sources stay within this boundary
- Un-smooth sources have sidelobes that extend beyond horizon

Avoiding Foregrounds in Delay Space II

- Maximum delay is baseline length dependent
- Shorter baselines can access more of 21cm signal
- Free to maximize number of short baselines!

Mapping Delay Space to k-space

- Delay-space is not a perfect match to cosmological k-space
 - A baseline samples different transverse modes as a function of frequency
- How bad is the effect of "modemixing"?
- With short baselines and smallbandwidths, you can get away with it!
 - Short baselines already desirable for foreground isolation
 - Small-ish (8 MHz) bandwidths already necessitated by cosmology

Delay Spectrum Technique: Predictions

Legend

 Dotted: PAPER-128 sensitivity

 Solid black: Lidz et al. 2008 EoR power specta vs. <x_i>

 Solid colors: Maximum k-mode foreground contamination for 16λ, 32λ, 64λ, 128λ baseline

HERA-576 Parameters

Parameter	Value	Units	Description
N	576		Number of Antennas
d	14	m	Antenna Diameter
f/d	0.32		Focal Length (fractional)
$\Omega_{ m P}$	0.026	\mathbf{sr}	Field of View (power)
$\Omega_{ m PP}$	0.013	\mathbf{sr}	Field of View (power ²)
$\Omega_{ ext{eff}}$	0.052	\mathbf{sr}	Field of View (sensitivity)
$B_{ m samp}$	$0\!-\!250$	MHz	Sampled Frequency Range
$B_{ m corr}$	100	MHz	Correlated Bandwidth
Config.	24×24		Square Grid Antenna Configuration
f/f_0	$1.5\cdot 10^5$		Redundancy Metric (Parsons et al. 2012a)
A	0.09	km^2	Total Collecting Area
θ	15	arcmin	Angular Resolution (150 MHz)
$b_{ m max}$	500	m	Maximum Baseline
$T_{ m sys}$	500	Κ	System Temperature
$t_{ m obs}$	120	days	Observing Time
$t_{ m day}$	6	hrs	Observing Time Per Day
$\Delta_{ m N}^2$	1.6	mK^2	Expected Noise Level $(k = 0.2h \text{ Mpc}^{-1})$
SNR_{21}	11.7σ		Expected Detection Significance (Lidz et al. 2008, $x_i = 0.5, 150 \text{ MHz}$)

The HERA Dish

- 14m diameter, 4.5m focal height, zenith-pointing
- Confines reflections to delays < 50 ns, ensuring smooth frequency response for foreground suppression
- Dish diameter minimizes cost for sensitivity, given the foreground removal specification

HERA Signal Flow

- Short analog signal chain minimizes reflection timescales
- New CASPER board digitizes 0-250 MHz, hosts correlator F-engine, transmits selected 100-MHz via 10GbE optical links
- 42 GPU-accelerated servers act as correlator X-engines (night) and data compression engines (daytime)

