The Hubble Space Telescope and the Hubble Constant

THE UNIVERSE

Jeremy Mould Centre for Astrophysics and Supercomputing Swinburne University

SWINBURNE UNIVERSITY OF TECHNOLOGY

Telescope resolution

Due to the wave nature of light (diffraction) the optical resolution of a telescope or camera is λ/D

- The human eye: 20 arcsec
- Galileo's telescope: 3.8 arcsec
- Hubble Space Telescope 40 milliarcsecs

Ritchey Chrétien optical design

Introduction

- Subject today is the Expanding Universe
 The Expanding Universe model describes the motions of galaxies
- Just like the model of Copernicus describes the motions of the planets

Outline

Hubble's evidence for an expanding Universe
How fast is the Universe expanding now ? (the Hubble Constant)

0 0 0

000

- Variation of the expansion rate over time
- How long is it since the Big Bang ?

Edwin Hubble

1889

1953

Hubble's evidence

Overview on the Hubble Constant

- what is redshift ?
- measuring distances geometrically
- we start with the Large Magellanic Cloud
- the Hubble Space Telescope Key Project
- Cepheids as standard candles
- Supernovae as standard candles

REDSHIFT

<u> ←</u> → = × $c = 3 \times 10^5 \text{ km/sec}$

Parallax distance measurement

Also: 1 AU at 1 kiloparsec subtends 1 milliarcsec 1 AU at 1 megaparsec subtends 1 microarcsec

1 parsec is 3 x 10¹³ km; if we can measure the angle, we can get the distance

Supernova 1987A

- a massive star exploded in the LMC
- February 1987
- the LMC is our nearest neighbour galaxy
- in fact, it's a satellite

SN1987A

the ring lit up
 250 days after
 the supernova

radius known

angle known

=> distance

Supernova 1987A Rings

Hubble Space Telescope Wide Field Planetary Camera 2

SN1987A

Schematic of SN1987A

The Hubble Constant Key Project

Goal:

Measure how fast the Universe is expanding to 10% accuracy

The HST Key Project Jeremy Mould Robert Kennicutt, U.Ariz Wendy Freedman, CIW **Shaun Hughes Barry Madore** Nancy Silbermann Shoko Sakai **Randy Phelps Robert Hill** Abi Saha Peter Stetson **Brad Gibson**

Laura Ferrarese Holland Ford Garth Illingworth Dan Kelson John Graham John Hoessell Lucas Macri John Huchra Anne Turner **Paul Harding Fabio Bresolin**

servicing mission

The first servicing mission replaced the WFPC with WFPC2 in December 1993, thus remedying spherical aberration

The power of the Hubble Space Telescope

From the ground we can resolve galaxies up to 2 or 3 Mpc away

HST was designed to have ten times the resolution of ground based telescopes

The project to find Cepheids up to 20 Mpc away was designated a Key Project for HST

The Cepheid period luminosity relation

Period (days)

Cepheid light curves in NGC 1365

top: visual

The PL relation in NGC 1365

bottom: infrared

Beyond the Cepheids

- Beyond 20 Mpc even HST has difficulty resolving Cepheids
- We use four other standard candles to measure distances a further factor of ten
- The Tully Fisher relation for spiral galaxies
- Supernovae of type Ia
- Surface brightness fluctuations = resolvability
- The fundamental plane for elliptical galaxies

Tully Fisher relation

big galaxies rotate faster

a galaxy with a given rotation speed is a standard candle

Galaxy Rotation Speed

The Hubble Constant

All 4
 standard
 candles
 agree

 H lies in the range
 65 to 77
 km/s/Mpc

LMC distance — kpc

How standard are standard candles ?

- most stars have a chemical composition like that of the sun
- but there are some variations....
- Cepheids with different chemistry pulsate differently
- accounting for this changes our distances a few percent

What is the density of the Universe ?

Rediscovery of Λ

See www.mso.anu.edu.au/~brian

Measuring the age

Summary

• we start with the distance of the LMC

- a Cepheid of period P is a standard candle of luminosity L
- HST maps the Cepheids out to 20 Mpc
- Four other standard candles map the expansion out to 200 Mpc
- $H_0 = 72 + -7 \text{ km/sec/Mpc}$
- Universe is 13.5 +/- 1.5 Gyrs old

Oldest stars

- globular star clusters
- parallaxes
 with SIM
 or GAIA
- measure ages to half a billion years

Where to get more information

Measuring the Universe' by Stephen Webb

www.stsci.edu (Hubble Space Telescope) <u>http://oposite.stsci.edu/pubinfo/1999.html</u>