Einstein & Special Relativity

A. Einstein (1879-1955)

Dr. Greg Madsen Univ. of Sydney

Physics Limerick

There was a young lady named Bright, Whose speed was far faster than light; She set out one day, In a relative way, And returned home the previous night. - A.H.R. Buller (1923)

WARNING

Special relativity contradicts common sense!

If you are confused by this, you are on the right track

WARNING

• In order to describe **speed**, you have to specify a "reference frame" or point of view

• Example: **"I am on the highway driving at 100 km/h"**

Speed relative to a billboard: 100 km/h Speed relative to your passenger: 0 km/h Speed relative to oncoming traffic: 200 km/h

Reference Frames

• In order to describe **speed**, you have to specify a "reference frame" or point of view

• Be very careful to specify which reference frame you are in!

• In order to describe **speed**, you have to specify a "reference frame" or point of view

• Be very careful to specify which reference frame you are in!

• **Special** kind of reference frame: "inertial reference frame" moves at a **constant speed** relative to another reference frame

• Principle of Relativity: **"The laws of physics are the same in every inertial reference frame"**

• Principle of Relativity: **"The laws of physics are the same in every inertial reference frame"**

Example:

You do an experiment in the classroom to measure the Earth's gravitational force on a cricket ball.

Your friend does the same experiment on a train moving at a *constant speed*.

This principle says you will measure the same force!

- Principle of Relativity: **"The laws of physics are the same in every inertial reference frame"**
- One law of physics: Light always travels at a constant speed $(c \approx 3.0 \times 10^5 \text{ km/s in a vacuum})$

- Principle of Relativity: **"The laws of physics are the same in every inertial reference frame"**
- One law of physics: Light always travels at a constant speed $(c \approx 3.0 \times 10^5 \text{ km/s in a vacuum})$
- \Rightarrow Light travels at speed *c* in every inertial reference frame
- \Rightarrow The speed of light is independent of the speed of the source of light !!!

- Consider two inertial reference frames:
- S: Observer at rest on Earth
- S': A spaceship moving at constant speed

NEWTONIAN MECHANICS FAILS: Newtonian mechanics tells us *incorrectly* that the light moves at a speed greater than *c* relative to the observer on earth ... which would contradict Einstein's second postulate.

• How can we make sense of this?

- How can we make sense of this?
- Speed depends on our reference frame

- How can we make sense of this?
- Speed depends on our reference frame
- Speed is distance travelled per unit time

- How can we make sense of this?
- Speed depends on our reference frame
- Speed is distance travelled per unit time

 \Rightarrow For *c* to be constant in all inertial reference frames, then distance and time must be stretched/compressed in different reference frames!

S. Dali

: concepts of distance and time depend on our reference frame!

• An observer *at rest* in frame S_0 observes a time t_0 elapse between two events that take place at the *same point in space* in S_0 . (e.g. spill coffee in lap on train)

- An observer *at rest* in frame S_0 observes a time t_0 elapse between two events that take place at the *same point in space* in S_0 . (e.g. spill coffee in lap on train)
- Now imagine an observer in a different reference frame S_v that is moving at a *constant speed* v relative to S_0 . (e.g. eyewitness on train platform)

- An observer *at rest* in frame S_0 observes a time t_0 elapse between two events that take place at the *same point in space* in S_0 . (e.g. spill coffee in lap on train)
- Now imagine an observer in a different reference frame S_v that is moving at a *constant speed v* relative to S₀. (e.g. eyewitness on train platform)
 The observer in S_v will see those events: occur at *different points in space*, and

- An observer *at rest* in frame S_0 observes a time t_0 elapse between two events that take place at the *same point in space* in S_0 . (e.g. spill coffee in lap on train)
- Now imagine an observer in a different reference frame S_v that is moving at a *constant speed* v relative to S_0 . (e.g. eyewitness on train platform) The observer in S_v will see those events: occur at *different points in space*, and occur over a *longer time interval* $t_v = \frac{t_0}{\sqrt{1-t_0}}$

- This is called 'time dilation'
- The larger v is, the bigger the effect

- This is called 'time dilation'
- The larger v is, the bigger the effect
- This is only a big effect if v is close to c
- Example
 - $v = 0.01c \implies t_v = 1.00005 \times t_0$
 - $v = 0.1c \implies t_v = 1.005 \times t_0$
 - $v = 0.5c \implies t_v = 1.155 \times t_0$

Queen Elizabeth XX flies from London to Sydney (18,000 km) on a spaceship at a constant speed of 30,000 km/s (0.1c).

How much time does the trip take: a) measured by observer on the ground? b) measured by observer on the spaceship?

Queen Elizabeth XX flies from London to Sydney (18,000 km) on a spaceship at a constant speed of 30,000 km/s (0.1c).

Identify events and reference frames.

Event 1: Leave London

Event 2: Arrive Sydney

Queen Elizabeth XX flies from London to Sydney (18,000 km) on a spaceship at a constant speed of 30,000 km/s (0.1c).

Identify events and reference frames.

Event 1: Leave London Event 2: Arrive Sydney

From observer on ground, events take place at different points in space.

Queen Elizabeth XX flies from London to Sydney (18,000 km) on a spaceship at a constant speed of 30,000 km/s (0.1c).

Identify events and reference frames.

Event 1: Leave London Event 2: Arrive Sydney

From observer on ground, events take place at different points in space.

 \Rightarrow Observer on ground is in frame S_{ν}

Queen Elizabeth XX flies from London to Sydney (18,000 km) on a spaceship at a constant speed of 30,000 km/s (0.1c).

Identify events and reference frames.

Event 1: Leave London Event 2: Arrive Sydney

From observer on spaceship, events take place at *same point in space*.

Queen Elizabeth XX flies from London to Sydney (18,000 km) on a spaceship at a constant speed of 30,000 km/s (0.1c).

Identify events and reference frames.

Event 1: Leave London Event 2: Arrive Sydney

From observer on spaceship, events take place at same point in space. \Rightarrow Observer on spaceship is in frame S_0

Queen Elizabeth XX flies from London to Sydney (18,000 km) on a spaceship at a constant speed of 30,000 km/s (0.1c).

a) Observer on ground (S_{ν}) measures time between events

$$t_v = \frac{18,000 \,\mathrm{km}}{30,000 \,\mathrm{km/s}} = 0.600 \,\mathrm{s}$$

Queen Elizabeth XX flies from London to Sydney (18,000 km) on a spaceship at a constant speed of 30,000 km/s (0.1c).

b) Observer on spaceship (S_0) measures time between events

$$t_0 = t_v \sqrt{1 - \frac{v^2}{c^2}}$$

= 0.600s $\sqrt{1 - \frac{1}{10^2}}$
\approx 0.597s

Queen Elizabeth XX flies from London to Sydney (18,000 km) on a spaceship at a constant speed of 30,000 km/s (0.1c).

a) Observer on ground (S_{ν}) measures

 $t_{v} = 0.600 s$

b) Observer on spaceship (S_0) measures $t_0 \approx 0.597 \, \mathrm{s}$

 \Rightarrow Time passes by more slowly on spaceship

 \Rightarrow Observed by actual clocks on actual planes

Tips & Tricks

- It is easy to confuse reference frames
 - each frame sees the other one moving!
 - common error: using wrong numbers in equations

Tips & Tricks

- It is easy to confuse reference frames
 - each frame sees the other one moving!
 - common error: using wrong numbers in equations
- For time dilation:
 - identify events
 - identify reference frame in which the events happen at same point in space (S_0, t_0)
 - identify reference frame in which the events happen at different point in space (S_v, t_v)
 - apply formula

- The principle of relativity can also be applied to show:
 - distance between points changes with speed
 mass increases with increasing speed
 a mass *m* at rest has non-zero energy E = mc²
 if m ≠ 0, it cannot be accelerated to speed of light
 concept of simultaneous events is limited

- The principle of relativity can also be applied to show:
 - distance between points changes with speed
 mass increases with increasing speed
 a mass *m* at rest has non-zero energy E = mc²
 if m ≠ 0, it cannot be accelerated to speed of light
 - 5. concept of simultaneous events is limited
- Practical applications
 - Global Positioning System (GPS)
 - Particle accelerators (e.g. Large Hadron Collider)
 - Observations of jets from black holes

WARNING

Special relativity contradicts common sense!

If you get confused by this, you are on the right track

WARNING