

Telescopes

CAASTRO in the Classroom: National Science Week 2017

Stephanie Bernard, University of Melbourne

About me

The first telescopes

★ Invented in 1600s in the Netherlands

***** Refracting

telescopes use lenses to bend light

★ Refractors are very long and unwieldy

- ★ Galileo improved telescope design and discovered four moons around Jupiter in 1610
- Used his telescope to look at the Moon

 determined that dark and light
 patches were due to cratering

The first telescopes

 Reflecting telescopes use mirrors to reflect light – can be much larger than refracting telescopes

Modern telescopes

 Largest reflecting telescopes are 8-10 m in diameter – glass is too heavy for larger mirrors, they have to be segmented

- Light is both a particle (photon) and a wave – called electromagnetic radiation
- ★ Different energies of light have different wavelengths and frequencies

* **Resolution** of telescope depends on wavelength and size of mirror

Resolution

 $= 1.22 \frac{7}{5}$

★ Larger diameter telescope → smaller angle = better resolution

★ Longer wavelength → larger angle = worse resolution

θ

angular resolution •

diameter of telescope

wavelength

 $= 1.22 \frac{1}{2}$

- * Optical telescopes ($\lambda = 350 850$ nm) telescopes are a few metres in diameter
- Radio telescopes (λ = several metres) –
 telescopes are dozens to hundreds of
 metres in diameter
 wavelength

θ

angular resolution ·

diameter of telescope

Ground-based

- ★ Telescopes on the ground have to look through the atmosphere
- ★ The atmosphere is turbulent and blurs the light coming from a source – called **seeing**

Ground-based

- ★ The atmosphere is also only transparent to certain wavelengths – molecules in the atmosphere like water absorb light
- Optical and radio wavelengths can get through but ultraviolet and infrared wavelengths are blocked

Space-based

Space-based telescopes can detect wavelengths that are blocked by the atmosphere

The light doesn't get blurred – better resolution

Space telescopes

CitC #NatSciWk 2017 - Telescopes

Images

★ Images tell us
 where sources
 are on the sky

Use filters to look
 at only certain
 wavelengths

Hubble Deep field

Spectra

- ★ By splitting the light into different wavelengths we can look at the spectrum of the object
- Sources can emit
 more light at particular
 wavelengths or
 absorb only particular
 wavelengths

Spectrum of a galaxy

- ★ Use imaging and spectroscopy together to get information about sources like stars and galaxies
- * Imaging first to find **where** sources are
- ★ Spectroscopy then tells us things like what the source is made of, how far away it is

- * To get data, we use telescopes to perform surveys
- ★ Telescopes can be dedicated to particular surveys, e.g. Sloan Digital Sky Survey
- ★ Or telescopes can be open to astronomers who propose to use part of the telescope's time to look at particular sources

CitC #NatSciWk 2017 - Telescopes

Redshift of a Photon

