
Workshop Exercises Summaries

By Shin Kee Chung

CAASTRO (UWA)

Part 1 Summaries

• Part 1 is fairly simple, the main difficulty is
grasping the concept of parallel programming.

– It is different to conventional C programs, you are
writing programs that will get executed many
times (extremely similar to MPI).

• It might also be confusing that you have the
graphics card series (GTX600), CUDA toolkit
series (4.2) and compute capability (2.0),
which are all different.

1.4 Vector Addition

• By referring to the example, it makes it quite easy
to complete.

• The optional section is just a little bit tricky, you
should consider how the index should increase
when thread indices increase, then proceed to
consider block indices.

• The final indexing looks like this:
• index = bx*nby*ntx*nty + by*ntx*nty +tx*ntx + ty

• 3D:

• index = bx*nby*nbz*ntx*nty*ntz + by*nbz*ntx*nty*ntz +
bz*ntx*nty*ntz + tx*nty*ntz + ty*ntz + tz

1.5 Timings

• Concept of asynchronous.

• For vector addition, it is virtually impossible
for GPU to beat CPU in terms of speed at this
stage. So don’t get upset for it.

1.6 2D Arrays

• Fairly straight forward, just compile, execute
and observe.

1.7 Matrix Multiplication

• Matrix multiplication is one of the simplest (yet
no so simple) algorithm that can be tested in
GPU.

• When you start attempting it, you will most
probably find that it gets complicated really
quickly, especially when it is non-square matrices.
This is just a “simple” non-optimized version.

– This is part of the challenge in CUDA programming.

2.1 CUBLAS

• This part is also fairly straight forward, we only
tested out some CUBLAS functions, and look
at how it gets executed.

• If you did the matrix multiplication in the
previous part, you will most probably find that
your implementation is much much slower
than CUBLAS.

• This is normal for unoptimized code.

2.2 CUFFT

• Firstly, without changing the size of the FFT
operation, almost certainly CUFFT is slower.

– Only when you get to reasonably large size, like
210 then you will have some speed up.

• The batched version though, should be able to
give a much better speed-up. The speed-up
should reach a plateau with certain batch size.

2.3 Atomic Functions

• When multiple threads are performing some
operations into the same memory space, it is
almost certain that they won’t be able to
cooperate well. We need atomic functions.

• But atomic functions are just going to lock the
memory space when certain thread access it.
Making it a sequential operation which is very
slow, not really what you want CUDA
programs to be doing.

3.1 CUDA Profiler

• CUDA profiler is not just very useful in
identifying bottlenecks, but also useful in
detecting problems.

• If CUDA profiler does not output any time, or
the time is not what you expect, you can be
sure that there are some problems in your
programs.

3.2 Threads, Blocks and Grid

• You may find that having any number from 1 to 64
threads makes no difference to the kernel execution
time, then any number from 65 to 96, and 97 to 128,
all incremented by warp size, 32.

• This means that threads are best chosen to be multiple
of warp size, so that you don’t waste computational
resources.

• In general, there is a range of optimal numbers you can
choose. You should not choose too many or too few.
– The key is whether your threads and blocks can keep the

GPU busy (high occupancy).

3.3 Batch Implementation

• This part actually discusses two issues.
– Batch concept

– Not all programs are suitable for GPUs

• Vector addition, is just a bit too simple, while the
memory transfer is too much in utilizing GPUs.

• Therefore, if you have an algorithm that just
consists of a number vector additions (or
operations that are simple but require high
memory transfer), you probably shouldn’t think
about optimization with GPUs.

3.4 Aligned Memory Access

• In terms of memory, we usually choose
multiples of 256 bytes to avoid wasting the
spaces (as CUDA always align your memory to
blocks of 256 bytes as mentioned in the
documentation).

• Strided access is the one that you should be
aware of, as it cost at least double your
memory bandwidth for the same number of
data.

3.5 2D Memory

• The pitch allocation guarantees alignment
requirement across different rows.

• Effectively, the pitch is your real width of your
allocated memory. So your should use pitch
bytes when going into next row.

• The indexing looks like this:
i = bx * pitch / sizeof(float) * tx;

3.6 Shared Memory

• Shared memory is not a magical feature that will
solve everything. It still needs to read from global
memory at least once.
– Not useful for algorithms that doesn’t read the

memory repeatedly

• Again, it is hard to achieve great speed-up as the
memory readings are only repeated 8 times, or a
few times.
– Think about matrix multiplication with size 1000 or

more, which should be very worthwhile to implement
this.

Part 4 Summaries

• The techniques explained in this workshop are
not exhaustive, beneficial to stay up-to-date.

• There are quite a bit of optimization
techniques explain in CUDA C Best Practices
Guides, we have only covered a few that
might not be easy to understand.

4.1 CUDA Streams

• Depending on your programs, you might want
to overlap kernel execution and memory copy,
or overlap two memory copies.

• While concurrent kernel can provide a bit of
speed-up, you should always consider having
a larger kernel execution which is usually
faster.

4.2 Bank Conflict

• Bank conflict can happen when:

– Multiple threads in the same warp accessing the
same memory address.

– You access too many successive memory space
that you run out of banks.

• There is need to carefully consider whether it
is really essentially to optimize for avoiding
bank conflict.

4.3 Avoid Warp Divergence

• When replacing if-cases with maths operation,
it might affect the overall execution speed
when the warp doesn’t perform diverged
operations that often.

• Again, it is hard to predict in advance which
methods are faster, it will come down to
testing most of the time.

• Answer for the example warp divergence:
y = (1 + floor(x + 0.5)) * x;

