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Part 1 Summaries 

• Part 1 is fairly simple, the main difficulty is 
grasping the concept of parallel programming. 

– It is different to conventional C programs, you are 
writing programs that will get executed many 
times (extremely similar to MPI). 

• It might also be confusing that you have the 
graphics card series (GTX600), CUDA toolkit 
series (4.2) and compute capability (2.0), 
which are all different. 



1.4 Vector Addition 

• By referring to the example, it makes it quite easy 
to complete.  

• The optional section is just a little bit tricky, you 
should consider how the index should increase 
when thread indices increase, then proceed to 
consider block indices. 

• The final indexing looks like this: 
• index = bx*nby*ntx*nty + by*ntx*nty +tx*ntx + ty 

• 3D: 

• index = bx*nby*nbz*ntx*nty*ntz + by*nbz*ntx*nty*ntz + 
bz*ntx*nty*ntz + tx*nty*ntz + ty*ntz + tz 



1.5 Timings 

• Concept of asynchronous. 

• For vector addition, it is virtually impossible 
for GPU to beat CPU in terms of speed at this 
stage. So don’t get upset for it. 

 



1.6 2D Arrays 

• Fairly straight forward, just compile, execute 
and observe.  



1.7 Matrix Multiplication 

• Matrix multiplication is one of the simplest (yet 
no so simple) algorithm that can be tested in 
GPU.  

• When you start attempting it, you will most 
probably find that it gets complicated really 
quickly, especially when it is non-square matrices. 
This is just a “simple” non-optimized version. 

– This is part of the challenge in CUDA programming. 



2.1 CUBLAS 

• This part is also fairly straight forward, we only 
tested out some CUBLAS functions, and look 
at how it gets executed.  

• If you did the matrix multiplication in the 
previous part, you will most probably find that 
your implementation is much much slower 
than CUBLAS. 

• This is normal for unoptimized code. 



2.2 CUFFT 

• Firstly, without changing the size of the FFT 
operation, almost certainly CUFFT is slower.  

– Only when you get to reasonably large size, like 
210 then you will have some speed up.  

• The batched version though, should be able to 
give a much better speed-up. The speed-up 
should reach a plateau with certain batch size. 



2.3 Atomic Functions 

• When multiple threads are performing some 
operations into the same memory space, it is 
almost certain that they won’t be able to 
cooperate well. We need atomic functions. 

• But atomic functions are just going to lock the 
memory space when certain thread access it. 
Making it a sequential operation which is very 
slow, not really what you want CUDA 
programs to be doing. 



3.1 CUDA Profiler 

• CUDA profiler is not just very useful in 
identifying bottlenecks, but also useful in 
detecting problems.  

• If CUDA profiler does not output any time, or 
the time is not what you expect, you can be 
sure that there are some problems in your 
programs. 



3.2 Threads, Blocks and Grid 

• You may find that having any number from 1 to 64 
threads makes no difference to the kernel execution 
time, then any number from 65 to 96, and 97 to 128, 
all incremented by warp size, 32. 

• This means that threads are best chosen to be multiple 
of warp size, so that you don’t waste computational 
resources. 

• In general, there is a range of optimal numbers you can 
choose. You should not choose too many or too few.  
– The key is whether your threads and blocks can keep the 

GPU busy (high occupancy). 



3.3 Batch Implementation 

• This part actually discusses two issues.  
– Batch concept 

– Not all programs are suitable for GPUs 

• Vector addition, is just a bit too simple, while the 
memory transfer is too much in utilizing GPUs.  

• Therefore, if you have an algorithm that just 
consists of a number vector additions (or 
operations that are simple but require high 
memory transfer), you probably shouldn’t think 
about optimization with GPUs. 



3.4 Aligned Memory Access 

• In terms of memory, we usually choose 
multiples of 256 bytes to avoid wasting the 
spaces (as CUDA always align your memory to 
blocks of 256 bytes as mentioned in the 
documentation). 

• Strided access is the one that you should be 
aware of, as it cost at least double your 
memory bandwidth for the same number of 
data. 



3.5 2D Memory 

• The pitch allocation guarantees alignment 
requirement across different rows.  

• Effectively, the pitch is your real width of your 
allocated memory. So your should use pitch 
bytes when going into next row.  

• The indexing looks like this: 
i = bx * pitch / sizeof(float) * tx; 



3.6 Shared Memory 

• Shared memory is not a magical feature that will 
solve everything. It still needs to read from global 
memory at least once. 
– Not useful for algorithms that doesn’t read the 

memory repeatedly 

• Again, it is hard to achieve great speed-up as the 
memory readings are only repeated 8 times, or a 
few times.  
– Think about matrix multiplication with size 1000 or 

more, which should be very worthwhile to implement 
this. 



Part 4 Summaries 

• The techniques explained in this workshop are 
not exhaustive, beneficial to stay up-to-date. 

• There are quite a bit of optimization 
techniques explain in CUDA C Best Practices 
Guides, we have only covered a few that 
might not be easy to understand. 

 



4.1 CUDA Streams 

• Depending on your programs, you might want 
to overlap kernel execution and memory copy, 
or overlap two memory copies. 

• While concurrent kernel can provide a bit of 
speed-up, you should always consider having 
a larger kernel execution which is usually 
faster.  



4.2 Bank Conflict 

• Bank conflict can happen when:  

– Multiple threads in the same warp accessing the 
same memory address. 

– You access too many successive memory space 
that you run out of banks. 

• There is need to carefully consider whether it 
is really essentially to optimize for avoiding 
bank conflict. 



4.3 Avoid Warp Divergence 

• When replacing if-cases with maths operation, 
it might affect the overall execution speed 
when the warp doesn’t perform diverged 
operations that often. 

• Again, it is hard to predict in advance which 
methods are faster, it will come down to 
testing most of the time. 

• Answer for the example warp divergence: 
y = ( 1 + floor(x + 0.5) ) * x; 


