

$CORE \Rightarrow ZEBRA \Rightarrow SARAS$ The Zero Spacing Interferometers

Ron Ekers, CSIRO & Ravi Subrahmanyan, RRI

CAASTRO Global EoR Workshop Sydney, 19 Nov 2012

From CoRE I to ZEBRA

Global EoR system RRI Bangalore

Zebra – fat dipole v1

CSIRO

CSIRO

First light 14 Sep 2010

Spectrum is the expected galactic power law.

CSIRO

Global EoR Signal

Signal in the 50-200MHz depends on the

(i) spin temperature(ii) ionization fraction

during z = 26 - 6

The challenge

Zero spacing

interferometer

Global ΔT 30mK in few MHz

- S/N easy can reach a few mK in one ho
- $\Delta T/T < 10^{-4} \text{ to } 10^{-5}$
- Calibrate the gain
- Minimize the number of unknowns that is couple to EoR
- Remove the additive constant
 - Correlation receiver
 - » Eliminate LNA additive noise but fall many problems
 - Position switching
 - » <u>AT now very small so large an</u>tenna and long integration times
 - » Correlation interferometer
 - » Arrays
 - Statistical detection
 - Direct detection

ZEBRA- interferometer

Visibility Amplitude for a uniform sky, isotropic antenna

Baseline Length (Wavelengths)

ZEBRA Global EoR Experiment

- ZEro-spacing measurement of the Background RAdio spectrum
- Partially reflecting resistive screen
- Virtual zero spacing interferometer
- Removes all additive errors
- Modulate screen ?

Subrahmanyan, Ekers Patra Partial reflector/transmitter

Х

The space beam-splitter: a resistive wire mesh

Need a space beam-splitter before the antenna

- A lossless screen (e.g. a conducting grid)
 - transmitted & reflected waves are orthogonal
- Resistive wire mesh
 - Thickness of wire < skin depth</p>
 - Frequency independent
 - Re-radiated fields no longer cancel the incident field on the far side of the wire screen
- Lumped resistance on scale $<< \lambda$
 - Practical solution instead of resistance wire

1 3

Building resistive screen

The Resistive Screen

copper wire + lumped resistors

resistor value = free space impedance/2

3x4 metres holes to reduce wind loading

Roll up for transport

Measurements of propagation Amplitude & phase through the resistive mesh

For normal and oblique incidence

Measurements of E and H plane fields

Modeling the transmission amplitude and phase for FINITE SCREEN

Predictions based on WIPL-D model vs

Predictions from analytic formulation of transmission thro' a mesh plus physical optics

1.5m separation

- Max sky coverage at zero spacing 26%
- Contributions to correlated output
 - Global sky signal
 - Screen radiating
 - 1.5m interferometer sky correlation
 - » One path through screen
 - » Both paths miss screen

ZEBRA at Gauribidanur

ZEBRA receiver schematic

- Raghunathan
- Fat dipole
 - 87.5-175MHz
- Correlator
 - -2x ACR's
 - 1x XCR,
 - 12bit, 250MHz
- Correlator 100m away
 - Replace coax by fibre

Zebra correlated output

Baseline ripple

- changes with LST
- Repeats each day
- Multipath scattering of galaxy foreground signal
- Shifted location

Try heating the screen

ASKAP Phased Array Feed

Of the State State of the State

SARAS receiver evolution

Antenna Requirements for EoR measurements

Half-power beamwidth variation $< \pm 2.5\%$

- For a frequency range 87.5 to 175 MHz
- Keeps un-modeled foreground residuals < 5mK
- An electrically small antenna
 - No spurious high order frequency components
- Return loss > 10dB and constant over band
 - antenna gain losses and internal reflections of the receiver noise must be low and vary smoothly with frequency.

Fat Dipole Antenna Prototype II

150

Fat Dipole Antenna

- A. Raghunathan, Udaya Shankar, Ravi Subrahmanyan
 - submitted to IEEE AP
- A wide-band fat-dipole antenna
 - sinusoidal profile
 - frequency independent performance 87.5 to 175 MHz
- Structure optimized using electromagnetic modelling
 - Adopt a sinusoidal profile
- Design validated by constructing a prototype
 - The input return loss > 15 dB
 - Radiation power pattern is a frequency invariant (< 2.1%) cosine square over the octave bandwidth
- Now used in SARAS by Nipanjana Patra

RRI gets some interesting visitors!

 Composition by Ravi

 Snake photo by Nipanjana

Pulse calibration ?

- Inject and integrate short (ηsec) pulses
- Calibrated noise spectrum
- Understand & calibrate reflections
- Nipanjana Patra, Paul Roberts

