Study of Limitations to EoR Detection

Nithyanandan Thyagarajan
N. Udaya Shankar
Ravi Subrahmanyan
&
MWA Collaboration

(Raman Research Institute)
Conclusions

- EoR HI power spectrum detections seems feasible with current instruments such as MWA under specific assumptions
- Sample variance and thermal noise are the limiting factors on different scales
- Need for optimal observing strategies & array configuration
HI Power Spectrum

- Statistical detections seem feasible
- Forms a key science of SKA precursors & pathfinders
 - MWA
 - LOFAR
 - GMRT
 - LWA
 - PAPER

Lidz et al. (2008)
Challenges due to Contamination

- Foreground Galactic emission
- Foreground extragalactic radio continuum sources
- Residual Errors after Modeling
- Thermal Noise

Expected sources of contamination
Foreground Removal

- Knowledge of spectral information
 - Galactic modeling
 - Extragalactic source spectral index
- Knowledge of power spectrum symmetry
 - HI power spectrum isotropic
 - Foregrounds not isotropic and contain structure in Fourier space

Separation of contamination using symmetries in Fourier space
Contamination after Foreground Removal

- Confusion from unresolved unsubtracted/mis-subtracted sources due to poor angular resolution & limited flux sensitivity (Classical Source Confusion)
- Confusion from sidelobes of frequency dependent beams due to mode-mixing
- Thermal Noise
- Contamination from imaging algorithms (Vedantham et al. 2011)

Our focus on Classical Source Confusion, mode-mixing contamination & Thermal Noise
Framework of our Study

- Radio Source Distribution
 \[\log \left(\frac{(dn/dS)/(S^{-2.5})}{S} \right) = \sum_{i=0}^{6} a_i \log \left(\frac{S}{mJy} \right)^i, \]

- 128-tile MWA Layout

- Relations
 \[\{k_x, k_y, k_z\} = 2\pi \left\{ \frac{u}{D_M(z)}, \frac{v}{D_M(z)}, \frac{H_0 f_{21} E(z)}{c(1+z)^2 \eta} \right\}. \]

Hopkins et al. (2003)
Classical Confusion in k-space

- Consider zenith pixel
- Smooth variation along frequency of residuals
- Delta function at $k_{||} = 0$
- Array configuration determines variation along k
- Bandpass spillover into EoR window
Bandpass Windows

Blackman-Nuttall window reduces sidelobes by more than 3 orders of magnitude

\[B(f) = \frac{2\pi n}{N-1} \cos \left(\frac{2\pi n}{N-1} \right) \]

\[B(\eta) = b_1 \cos \left(\frac{4\pi \eta}{N-1} \right) \]

Nithyanandan Thyagarajan, RRI, India
Classical Confusion in k-space

Delta function at $k_{||} = 0$ spills over due to bandpass
Sidelobe Confusion

• Unsubtracted sources statistically represented by classical confusion is the source of sidelobes

• Sidelobes have frequency structure (results in mode-mixing)
Mode-mixing Principle

Bowman et al. (2009)

$$\eta_{\text{cont}} = \frac{u_{\text{max}} \, l}{f}$$

Vedantham et al. (2011)

Transverse structure of contamination translates to a line-of-sight structure due to mode-mixing l/f invariance
Sidelobe Confusion in k-space

Nithyanandan Thyagarajan, RRI, India

Global EoR Workshop, Sydney, 19-21 Nov. 2012
Sidelobe Confusion in k-space

Horizon ($l^2 + m^2 = 1$)

First null of Primary Beam

Edge Brightening
Sidelobe Confusion in k-space

Rectangular Window

Blackman-Nutall Window
Observed Sensitivity in k-space

Figure 5-8: Beam-corrected FFT cross-power spectrum in the 142.645 MHz frequency band. Boundaries are drawn and annotated indicating the range accessible for EoR power spectrum measurements. The solid lines indicate fundamental limits governed by the geometry of the array and the frequency bandwidth and resolution. The dotted lines indicate approximate boundaries on various contaminants. The horizontal line indicates the approximate cutoff of the foreground principal component subtraction, while the “wedge” indicates the region bounded by a $k_\perp \propto k_\parallel$ line formed by point spread function contamination. This figure serves as an observed analog to the predictions from [Vedantham et al., 2011] reproduced in Figure 5-8.
Thermal Noise

- \(V_{\text{rms}}(u,v,f) = 2k_B T_{\text{sys}} / A_e (\Delta f \tau)^{1/2} \)
- Thermal noise uniform along \(k_{||} \)
- Distribution along \(k\)-perp determined by Baseline distribution
- Integration time: 8 sec, 2 hours, 1000 hours
Thermal Noise in k-space

8 seconds

2 hours

1000 hours
Combined Uncertainty

\[(u^2 + v^2)^{1/2} [\lambda]\]

\[k_1 [\text{Mpc}^{-1}]\]

\[0.1 \quad 1 \quad 1.0 \quad 10.5 \quad 104.9\]
Model EoR Power Spectrum

- $P(k)$ from Lidz et al. (2008) for $z=7.32$, ionization fraction = 0.54
- Peculiar Velocity corrections applied
2D sensitivity (incl. sample variance)

(a) Blackman-Nutall window, 8 sec-
(b) Blackman-Nutall window, 2 hours
(c) Blackman-Nutall window, 1000 hours
Refined EoR windows

- Extra width due to convolution causing spillover
- Width $\sim 1/B$
Average in spherical shells in k-space

\[\bar{P}\overline{pkq}^{\ddagger} \frac{1}{N_k} \dot{y} P_{\text{los}} pk_k, k_{\parallel} q \quad \text{and,} \]

\[\frac{1}{\sigma^2 pkq} \dot{y} \quad 1 \quad \frac{1}{\sigma_{\text{los}}^2 pk_k, k_{\parallel} \sigma^2} \]

Nithyanandan Thyagarajan, RRI, India
Global EoR Workshop, Sydney, 19-21 Nov. 2012
1D sensitivity

(a) 8 seconds

(b) 2 hours

(c) 1000 hours
Conclusions

• Radio source statistics and 128T MWA layout
• Comprehensive estimate in k-space using
 1. Sidelobe confusion due to mode-mixing
 2. Classical Source Confusion
 3. Thermal Noise
 4. Sample Variance
• Array configuration has different effects on each
• Thermal Noise dominates on small scales
• Sample variance dominates on large scales
• Optimal choice of array and observing strategy (drfit-scan, tracking or hybrid)
• Compact arrays would give more sensitivity for EoR for future arrays?