

- How to be begin scratching the problem ?
- Present preliminary data collected at Muresk
- Status of absolute calibration
- Prospects of using satellites to calibrate log-spiral antenna

CAASTRO Global EoR Workshop, Sydney, 19-21 Nov 2012

Muresk two-states data (2012-10-04 - 2012-11-05)

Common problems of states identification

Solar activity observed with 0.273 sec resolution

Whole month worth of data

Whole month worth of data

Check system stability (ratio of 2 nights)

Check system stability (ratio of 2 nights)

Removing RFI spikes

Removing RFI spikes

After RFI removal

Uncalibrated spectrum at Muresk

Uncalibrated spectrum at Muresk

Smn

Antenna response

FEKO simulation of BICON at 150 MHz

Freq [MHz]

Calibrated spectrum (still under development)

Calibrated spectrum of file : galaxy_down_CALIB.txt

Calibrated spectrum (still under development)

Calibrated spectrum of file : galaxy_transit_CALIB.txt

Can OrbComm satellites be useful ?

Simulation vs OrbComm FM 31 (near bicon's axis pass)

Simulation vs OrbComm FM 31 (near axis pass)

1352119183_ORBCOMM_FM_31_power_vs_zendist.txt

Simulation vs OrbComm FM 31 (nearly perpendicular pass)

Simulation vs OrbComm FM 31 (nearly perpendicular pass)

1352229272_ORBCOMM_FM_31_power_vs_zendist.txt

Simulation vs OrbComm FM 15 (blinking, near perpendicular pass)

Simulation vs OrbComm FM 15 (blinking, near perpendicular pass)

Initial tests of top section of log-spiral antenna

OrbComm passes detected with the top section of the spiral antenna

- Bare Horns system has collected long chunk of preliminary data, which is being analysed
- Preliminary absolute calibration looks reasonable with respect to Angelica's sky model
- Prospects of using OrbComm satellites to verify cone's simulated pattern (at 137 MHz and even better at 400 MHz)
- We look forward to collect new data in a quieter location