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Motivation

LOCOS aims to measure the expected
absorption feature from cosmic-dawn ...

Pritchard & Loeb, PhRvD, 2008

... using the LOFAR Low Band
Antennas (LBA).

http://blog.lofar-uk.org/



Initial Conditions: Hardware

I LBA operates from 10 MHz to 100 MHz (140 > z > 13.2).
I Ionopsphere is a problem below ∼ 40 MHz (z ∼ 35).
I FM bands are a problem above ∼ 85 MHz (z ∼ 18).

I No noise injection: separation of global signal and receiver noise is
difficult.

I Current LBA dipoles are part of a station array (48 or 96 dipoles).
I Additional constraints/priors from visibilities
I High redundancy helps to diagnose/model systematics

I Dipole auto- cross-correlations can be recorded in parallel with
standard LOFAR observations

I Limited data resolution 200 kHz,10 sec: RFI occupancy is high.
(pilot data)

I Will piggyback on AARTFAAC observations in future. (Science data)



Initial Conditions: Hardware

I LBA operates from 10 MHz to 100 MHz (140 > z > 13.2).
I Ionopsphere is a problem below ∼ 40 MHz (z ∼ 35).
I FM bands are a problem above ∼ 85 MHz (z ∼ 18).

I No noise injection: separation of global signal and receiver noise is
difficult.

I Current LBA dipoles are part of a station array (48 or 96 dipoles).
I Additional constraints/priors from visibilities
I High redundancy helps to diagnose/model systematics

I Dipole auto- cross-correlations can be recorded in parallel with
standard LOFAR observations

I Limited data resolution 200 kHz,10 sec: RFI occupancy is high.
(pilot data)

I Will piggyback on AARTFAAC observations in future. (Science data)



Initial Conditions: Hardware

I LBA operates from 10 MHz to 100 MHz (140 > z > 13.2).
I Ionopsphere is a problem below ∼ 40 MHz (z ∼ 35).
I FM bands are a problem above ∼ 85 MHz (z ∼ 18).

I No noise injection: separation of global signal and receiver noise is
difficult.

I Current LBA dipoles are part of a station array (48 or 96 dipoles).
I Additional constraints/priors from visibilities
I High redundancy helps to diagnose/model systematics

I Dipole auto- cross-correlations can be recorded in parallel with
standard LOFAR observations

I Limited data resolution 200 kHz,10 sec: RFI occupancy is high.
(pilot data)

I Will piggyback on AARTFAAC observations in future. (Science data)



Initial Conditions: Hardware

I LBA operates from 10 MHz to 100 MHz (140 > z > 13.2).
I Ionopsphere is a problem below ∼ 40 MHz (z ∼ 35).
I FM bands are a problem above ∼ 85 MHz (z ∼ 18).

I No noise injection: separation of global signal and receiver noise is
difficult.

I Current LBA dipoles are part of a station array (48 or 96 dipoles).
I Additional constraints/priors from visibilities
I High redundancy helps to diagnose/model systematics

I Dipole auto- cross-correlations can be recorded in parallel with
standard LOFAR observations

I Limited data resolution 200 kHz,10 sec: RFI occupancy is high.
(pilot data)

I Will piggyback on AARTFAAC observations in future. (Science data)



Initial Conditions: Experimental Design

I Foregrounds significantly higher than 100 MHz to 200 MHz range
( T70

T150
∼ 6)

I Need assessment of ionospheric effects: ionospheric effects ∼ λ2

I Need assessment of chromatic LBA beam effects: simple wire
antenna over fractional bandwidth ∼ 100%



Initial Conditions: Experimental Design

I Foregrounds significantly higher than 100 MHz to 200 MHz range
( T70

T150
∼ 6)

I Need assessment of ionospheric effects: ionospheric effects ∼ λ2

I Need assessment of chromatic LBA beam effects: simple wire
antenna over fractional bandwidth ∼ 100%



Initial Conditions: Experimental Design

I Foregrounds significantly higher than 100 MHz to 200 MHz range
( T70

T150
∼ 6)

I Need assessment of ionospheric effects: ionospheric effects ∼ λ2

I Need assessment of chromatic LBA beam effects: simple wire
antenna over fractional bandwidth ∼ 100%



Ionospheric effects

I Dynamic effects like
scintillation may not be
important in long integrations

I Static effects include refraction
and absorption from a
homogeneous ionosphere

I Simple model: homogeneous
shell corresponding to F layer
∼ 200− 400 km

I ne = 5e11 m−3 gives typical
night time mid-latitude TEC of
10
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I Ionosphere is a rare medium:
ηiono = ηiono(ν) < 1

I Incoming rays suffer refraction

I There is a net ray deviation due
to the Earth’s curvature:
δθ(ν, θ)

I The radio horizon (freq
dependent) is below the
geometric horizon
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The ionosphere is a chromatic lens
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different frequencies leading to
chromatic mixing of spatial
structure into spectral structure
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Chromatic beam
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I Most of the chromatic features in the beam come from Fresnel
reflection from the ground plane

I This mixes spatial structure in the foregrounds into spectral structure



Quantifying chromatic effects using simulations

I Skymodel
(i) Haslam
408 MHz map
(α = −2.54)

(ii) PCA skymodel
from de Costa et
al. (2008)

I Antenna beam
(i)Non-chromatic
sin2 θ beam

(ii) simulated
LOFAR LBA beam

I Ionospheric
deviation angle is
used to stretch the
antenna beam at
each frequency
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A simple metric for evaluation

I How bad are the chromatic effects depends on how well we can
separate the foregrounds from the 21 cm signal in their presence

I

I Model 1: Tsky = T̃f + T21 −→ χ2
1 (Blue model)

I Model 2: Tsky = T̃f −→ χ2
2 (Red model)
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l̃ogTf = a0 + a1 log ν + a2(log ν)2 + ... + aN(log ν)N
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Is the spectra that complicated?

I SVD of the dynamic spectra—
Tsky = UΣV H— gives us an
orthonormal basis for spectral
(V ) and time (U) variability.
(also see Liu & Tegmark, 2012)

I The spectral basis
approximately resemble
polynomials.

I The first 4 basis functions
describe the mean spectrum to
the required level.

I An optimal foreground fit
requires no more than 4
parameters. Polynomials are
not the most efficient basis.
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A more efficient way to model the foregrounds

I Going to higher order polynomials (N > 3) is inefficient.

I We have not used the full spectral information present in current
foreground models (de Costa et al.).

I We have not used the time domain information in the dynamic
spectra (spatial correlation of sky brightness)

I We have not used our knowledge of LBA beams

I A simulated dynamic spectra can provide strong priors for forward
modeling.
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Forward modeling— first look
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G (ν)[Tsim(ν, t) + T (ν)] −→
Estimate G (ν) and T (ν)
See Rogers at al. 2004

I A simple model fits the data to
∼ 1%

I G (ν) and T (ν) resemble
expected curves
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Forward modeling— BeamCal (Very preliminary)

I Perturb the fiducial
beam to fit away the
1% residuals.

I Differential beams
are similar across
freq and pol.

I Strong suggestion of
wrong CasA flux in
the skymodels by
∼ 10%
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Conclusions

I Ever-present ionospheric refraction gives chromatic mixing (∼ few%)

I LBA beams give additional chromatic mixing.

I All chromatic effects may be fit with just 4 or 5 parameters

I Polynomials are inefficient basis as they discard well known priors
(sky and beam)

I First-go at forward modeling looks promising for LOCOS

I Future science data will provide:
(i) better time,freq resolution
(ii) additional calibration constrains through visibilities
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