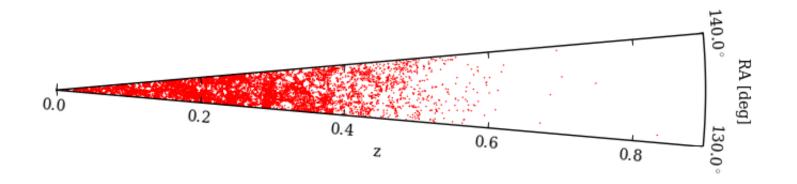
Durham Lightcones:

Synthetic galaxy survey catalogues from GALFORM

Jo Woodward,

Alex Merson, Peder Norberg, Carlton Baugh, John Helly



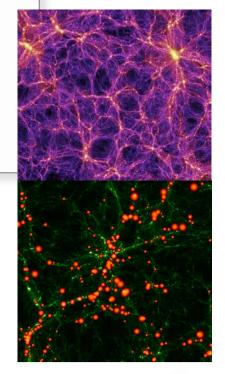
European Research Council Established by the European Commission

Outline

- 1. How are the lightcone mocks constructed?
- 2. What mocks are available currently?
- 3. Ongoing and near-future developments.

Wedge of a GAMA-09h lightcone in redshift and RA, 0.2 deg wide in declination, of the predicted distribution of all galaxies with r band magnitude selection (>20.2).

Why are lightcone mocks useful?


Prediction

- Lightcone mocks can be made for different:
 - o dark energy cosmologies
 - o galaxy formation models
 - o scales/wavebands already/not yet probed by observations

Calibration

- Test existing estimators: e.g. group-finders
- Define new estimators/statistics
- Uncover systematic effects
- Estimate errors

Building lightcones

- Dark Matter N-body simulation
 - Cosmological model

- Populate simulation with galaxies
 - Galaxy Formation models

Building lightcones: Millenium Simulations

Dark Matter N-body simulations available:

Millennium Simulation	Cosmology	Box Length (Mpc/h)	Equivalent maximum z	Min Halo Mass (M _o /h)	Useful for studies like
I	WMAP1	500	0.17	1.7 x 10 ¹⁰	e.g. groups,
WMAP7	WMAP7	500	0.17	1.9 x 10 ¹⁰	e.g. groups,
MXXL	WMAP1	3000	0.72	1.4 x 10 ¹¹	e.g. clustering
II	WMAP1	100	0.03	1.1 x 10 ⁸	Converg. Testing
WMAP7 for 977 snapshots	WMAP7	125	0.04	1.9 x 10 ¹⁰	Converg. Testing
Milli	WMAP1	62.5	0.02	1.7 x 10 ¹⁰	Code testing
GPICC	Sanchez et al (2009)	1000	0.3	1.4 x 10 ¹¹	Testing
WMAP1 : WMAP7 : Sanchez e	Ω	$\Omega_{\rm m} = 0.250, \Omega_{\Lambda} = 0.750, \Omega_{\rm b} = 0.0450, h = 0.730, \sigma_8 = 0.90$ $\Omega_{\rm m} = 0.272, \Omega_{\Lambda} = 0.728, \Omega_{\rm b} = 0.0455, h = 0.704, \sigma_8 = 0.81$ $\Omega_{\rm m} = 0.261, \Omega_{\Lambda} = 0.739, \Omega_{\rm b} = 0.0440, h = 0.716, \sigma_8 = 0.80$			

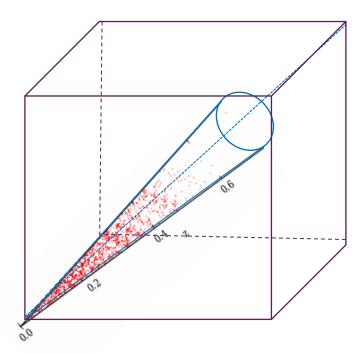
Building lightcones: GALFORM

Define hierarchical galaxy formation model using:

- Gas cooling & disk formation
- SF & feedback
- Galaxy mergers
- Chemical evolution & enrichment
- Dust extinction

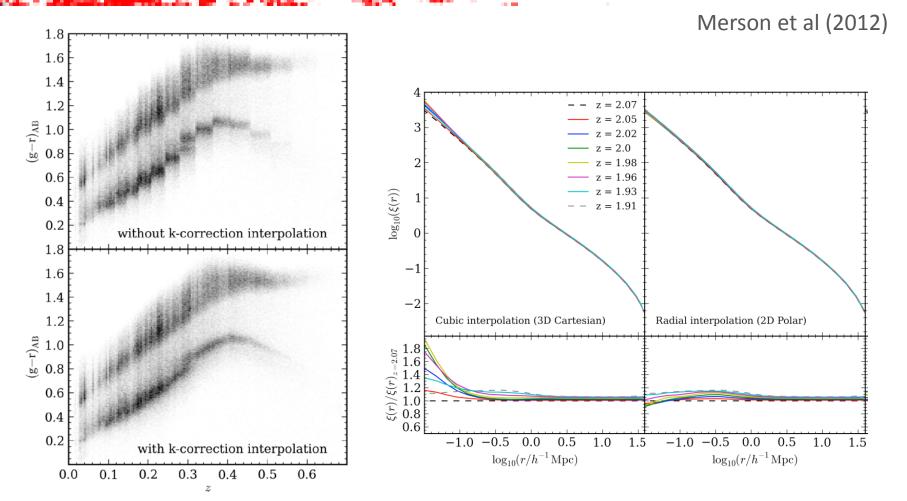
Compare with observations for

Galform


- LF
- HIMF
- gas metallicity
- disk radii
- morphological fraction

Building lightcones: GALFORM

Model	Cosmol -ogy	Updates	Tuned to?	Subsequently provides good match to
Cole+, 2000	WMAP 1	Original	 Local B- and K-band luminosity functions metalicities & disk radii morphological fraction 	Mass to light ratioAverage colours
Baugh+, 2005	WMAP 1	dust	As for Cole et al. 2000+ LBG luminosity function	 Galaxy number counts at 850 μm
Bower+, 2006	WMAP 1	AGN feedback	 As for Cole et al. 2000 + local black hole-bulge mass relation 	• Evolution of K band luminosity & stellar mass function
Font+, 2008	WMAP 1	ram-pressure stripping	• As for Bower 06	• colours of satellite galaxies + environmental dependence
Lagos+, 2012	WMAP 1	new sf law(s)	• As for Bower 06	 HI mass function 12CO(1–0) lum function
Gonzalez +, 2013	WMAP 7	Lagos for WMAP 7	• As for Lagos 12	
Lacey+, 2013	WMAP 7	Match sub- mm	As for Lagos 12+ sub mm counts	

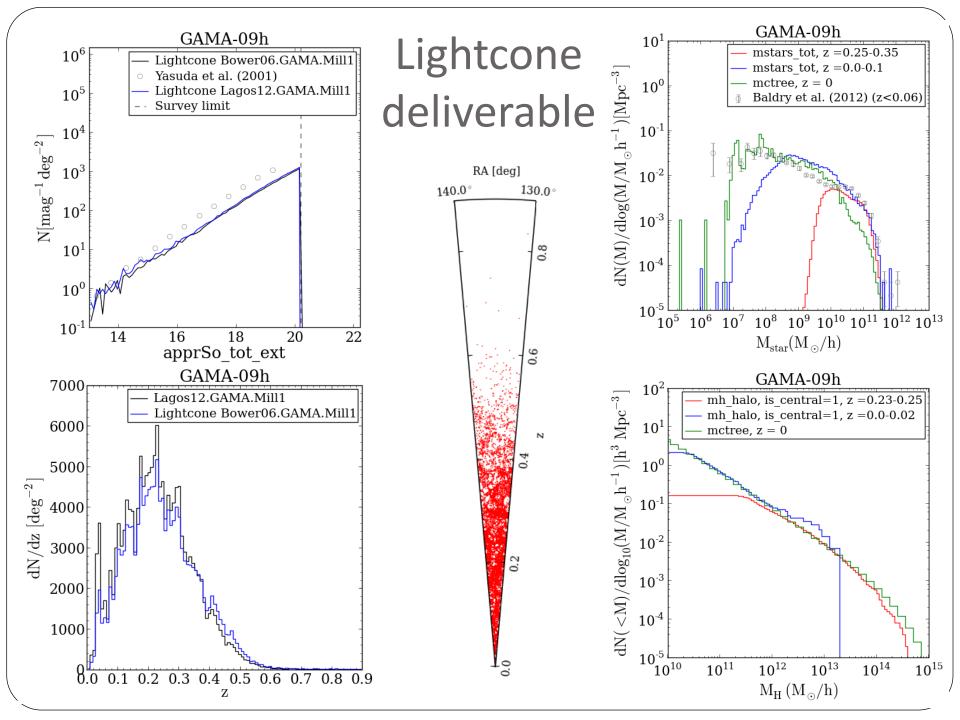

Building lightcones: Survey Specific limits

Merson et al (2012)

- Given cube of galaxies
- Tile to get required volume
- Position observer
- Apply solid angle mask
- Calculate halo redshift that enters the observers lightcone
- Interpolate positions of galaxies
- Interpolate magnitudes
- All other properties take values
 from previous snapshot
- Apply survey specific flux limits

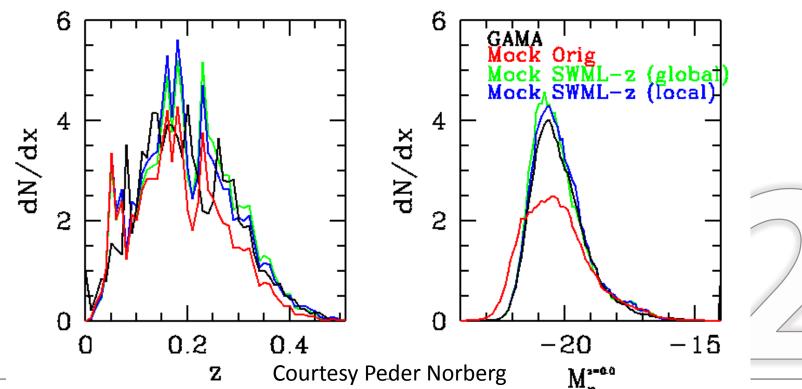
Building lightcones: Survey Specific limits

Availability of lightcones


Lightcones have already been produced for surveys including:

- GAMA
- PanSTARRS
- Taipan
- SDSS
- Euclid
-

Lightcone deliverable


- Lightcone
 - 512 hdf5 files
 - contains galaxy & halo
 - positions
 - velocities
 - masses
 - apparent magnitudes
 - redshifts
 - etc
- Accompanying pdf readme file
 - Description of how lightcone was made for different:
 - cosmologies
 - galaxy formation models
 - survey limits etc
 - Validation plots
 - Number counts, luminosity functions, HOD and mass functions
 - Plots compared with observational results.

What lightcones are available currently?

- However these lightcones are 'un-processed'.
- If you are not using them to test the GALFORM models but to say train statistic you may want to 'tune' the lightcone to your observations e.g.

Including more useful observational quantities:


• M_{200}/M_{500} values rather than the dhalo mass

 These are currently 'perfect' mocks. Plans for post processing of the lightcones include:

- Photometric redshifts
 - previously included using HyperZ code with Bruzual & Charlot (1993) templates
- Pertrosian magnitudes + noise
 - currently using just point source magnitudes

- Generating 'database' of lightcones from different models
 - Not just for testing GALFORM but testing sensitivity of the mock.
 GAMA-09h, Lagos12.GAMA.Mill1
- Halo Lightcones
 - same lightcone methodology
 - no survey specific restrictions
 - complementary information

 e.g. to understand
 completeness of halos in the
 lightcone.

- Spectra
 - the selection of galaxies by emission lines within a specified wavelength range
- Image pipeline
 - Example produced by Daniel Farrow for PanSTARRS
- Lensing
 - plan to incorporate into lightcone

Daniel Farrow & Alex Merson

- Making file easier to deliver
 - new database distribution format
 - file type converter for hdf5 to fits
 - also can do ascii (but small areas to test)
 - Splitting up hdf5 by projected area
 - reducing file sizes by having core file plus additional files for survey specific magnitudes
- More emphasis on reducibility
 - Combining GALFORM runs if extra bands required.

Summary

- Lightcone synthetic "mock" catalogues
 - Constructed from Millennium N-body simulations + GALFORM models
- Recent/ongoing developments:
 - Adding M200/M500 masses
 - Halo lightcones
 - Selection by emission lines
- Future developments
 - Image processing
 - Photo-zs and magnitude errors
 - Gravitational lensing