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Epoch of Reionization (EoR)

Image Credits: NASA/WMAP

13년 3월 22일 금요일



Epoch of Reionization (EoR)

Image Credits: NASA/WMAP

13년 3월 22일 금요일



EoR- Why is the EoR important?

• The EoR is one of the landmark events in 
the early generations of structure 
formation.

• Early stage of structure formation.

• identifying when first sources produce high 
energy photons to ionize neutral IGM

• providing properties of first galaxies and 
stars
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EoR- Observation
• Thanks to advance of low-frequency 

instrumentation, several observations are 
being constructed. 
• Murchison Widefield Array (MWA)

• The Low Frequency Array (LOFAR)

• Precision Array to Probe Epoch of Reionization 
(PAPER)

• The Square Kilometre Array (SKA)

• They will observe the 21cm signal from HI 
in IGM.
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The hierarchical galaxy formation model

GALFORM 
    (Lagos et al. 2012)

AGN feedback
SNe feedback
Photoionization feedback

This simulation successfully 

describes the Universe.
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The hierarchical galaxy formation model

+
Semi-Numerical scheme 

    (Kim et al. 2013)

Self-consistent result
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• Luminosity is not simply proportional to dark matter halo mass.

• Relation between UV magnitude and host halo mass
The hierarchical galaxy formation model
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Powerful method to probe EoR

• The observed cross-power spectrum 
between 21cm emission and galaxies and its 
evolution to be sensitive to the astrophysical 
properties such as... 

• the size of HII regions.

• clumpiness of the IGM.

• the nature of the ionizing sources.
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observational constraints on reionization. Here, we vary the
value of fesc, assumed Fc=1, as a function of redshift or
host dark matter halo masses to see the effect of histories of
reionization onto the 21cm power spectrum.

Based on equation (4), individual cells can have Qcell >
1. On the other hand, cells with Qcell < 1 may be ionized by
photons produced in a neighbouring cell. In order to find the
extent of ionized regions we therefore filter the Qcell field us-
ing a sequence of real space top hat filters of radius R (with
0.3906 < R < 100h−1Mpc), producing one smoothed ion-
ization field QR per radius. At each point in the simulation
box we find the largest R for which the filtered ionization
field is greater that unity (i.e. ionized with QR > 1). All
points within the radius R around this point are considered
ionized. This procedure forms the position dependent ion-
ization fraction 0 ! Q ! 1, which describes the ionization
structure of the IGM during reionization.

3.2 The cross-power spectrum

To calculate cross-power spectrum between 21cm fluctua-
tion and galaxy density distribution, we start from a galaxy
overdensity

δgal(r) =
ρgal(r)− ρ̄gal

ρ̄gal
, (6)

where ρgal(r) is a galaxy density field and ρ̄gal is mean den-
sity. The 21cm brightness temperature contrast may be writ-
ten as (Kim et al. (2012))

∆T21 = 23.8mK

(

1 + z
10

) 1
2

[1−Q](1 + δDM,cell). (7)

By using equation (7) we can define the 21cm fluctuation as

δ21(r) =
∆T21(r)− ∆̄T 21

∆̄T 21

, (8)

where ∆̄T 21 is the mean temperature contrast of 21cm
brightness. With the Fourier transform,

δ̂(k) =
1
V

∫

d3r e ik·rδ(r), (9)

δ(r) =
V

(2π)3

∫

d3k e−ik·rδ̂(k), (10)

where V is a finite box of volume with periodic boundary
condition, the cross-power spectrum is defined to be

〈

δ̂21(k1)δ̂gal(k2)
〉

≡ (2π)3δD(k1 + k2)P21,gal(k1), (11)

where δD(k) is the Dirac delta function. This definition can
be applied to auto power spectrum such as the galaxy and
21cm power spectrum. The dimensionless power spectrum
is given by

∆2(k) =
k3

(2π2)
P (k). (12)

3.3 The cross-correlation function

The cross-correlation function is defined as

ξ(r) = 〈δ1(x)δ2(x+ r)〉 . (13)

To improve the efficiency for computing time, rather
than calculating cross-correlation function directly, we cal-
culate it by using the fourier transform,

ξ(r) =
V

(2π)3

∫

P (k)
sinkr
kr

4πk2dk , (14)

where V is a finite box of volume. We also calculate the
cross-correlation coefficient,

r(k) =
P21,gal(k)

√

P21(k)Pgal(k)
. (15)

3.4 Error estimate in the cross-correlation

coefficient

In order to estimate the sensitivity of the statistical signifi-
cance where future surveys can detect the cross-power spec-
trum, we calculate the error of the cross-correlation coeffi-
cient. These calculations have been presented by a number
of authors (e.g. McQuinn et al. (2006); Furlanetto & Lidz
(2007b); Lidz et al. (2009b); Wyithe et al. (2008)). Here we
closely follow the procedure from Lidz et al. (2009b) and
Wyithe et al. (2008). For convenience we use the same no-
tation in Lidz et al. (2009b),

r(k) =
P21,gal(k)

√

P21(k)Pgal(k)
≡

A(k)
√

B(k)C(k)
. (16)

The error of the cross-correlation coefficient can be writ-
ten as

σr

r2
(k) =

σ2
A

A2
(k) +

σ2
B

4B2
(k) +

σ2
C

4C2
(k)

−
σ2
AB

AB
(k)−

σ2
AC

AC
(k) +

σ2
BC

2BC
(k). (17)

This equation has variances of the cross-power spectrum be-
tween 21cm and galaxy, and the auto-power spectrum of the
21cm and galaxy. It also has the covariance between each
different pairs of power spectra. The components of equa-
tion (17) are given by

σ2
A(k, µ) = var[P21,gal(k, µ)]

=
1
2
[P21,gal(k, µ) + σB(k, µ)σC(k, µ)] , (18)

σ2
B(k, µ) = var[P21(k, µ)]

=
1
NC

[

P21(k, µ) +
T 2
sys

Btint

D2∆D
n(k⊥)

(

λ2

Ae

)2
]2

,(19)

σ2
C(k, µ) = var[Pgal(k, µ)]

=
[

Pgal(k, µ) + n−1
gale

k2
‖σ

2
χ

]2

, (20)

σ2
AB(k, µ) = cov[P21,gal(k, µ),P21(k, µ)]

= [P21,gal(k, µ) + P21(k, µ)] , (21)

σ2
AC(k, µ) = cov[P21,gal(k, µ),Pgal(k, µ)]

= [P21,gal(k, µ) + Pgal(k, µ)] , (22)
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host dark matter halo masses to see the effect of histories of
reionization onto the 21cm power spectrum.
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extent of ionized regions we therefore filter the Qcell field us-
ing a sequence of real space top hat filters of radius R (with
0.3906 < R < 100h−1Mpc), producing one smoothed ion-
ization field QR per radius. At each point in the simulation
box we find the largest R for which the filtered ionization
field is greater that unity (i.e. ionized with QR > 1). All
points within the radius R around this point are considered
ionized. This procedure forms the position dependent ion-
ization fraction 0 ! Q ! 1, which describes the ionization
structure of the IGM during reionization.
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To calculate cross-power spectrum between 21cm fluctua-
tion and galaxy density distribution, we start from a galaxy
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T 2
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Ae
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from GALFORM is

ṄLyc,cell(t) =
Ncell
∑

i=1

ṄLyc,i(t), (2)

where

ṄLyc,i(t) =

∫ ∞

νthresh

Lν,i(t)
hν

dν, (3)

Lν,i is the spectral energy distribution of galaxy i and νthresh
is the Lyman-limit frequency, hνthresh = 13.6 eV. Note that
the number of photons produced per baryon in long-lived
stars and stellar remnants depends on the IMF and metal-
icity (Z). Note that we assume the total Lyman continuum
luminosity in a cell at redshift zi to be constant until the
next snapshot at redshift zi+1, and calculate the number
of photons produced in the cell between zi and zi+1 to be
ṄLyc,cell(tzi)× (tzi+1 − tzi).

We then calculate the ionization fraction within each
cell according to

Qcell =

[

Nγ,cell

(1 + Fc)NHI,cell

]

, (4)

where Fc denotes the mean number of recombinations per
hydrogen atom up to reionization and NHI,cell is the number
of neutral hydrogen atoms within a cell. The latter quantity
is calculated as

NHI,cell = nHI(δDM,cell + 1)Vcell, (5)

where we assume that the overdensity of neutral hydrogen
follows the dark matter (computed based on the Millennium-
II simulation density field), nHI is the mean comoving num-
ber density of hydrogen atoms, and Vcell is the comoving
volume of the cell. Self-reionization of a cell occurs when
Qcell ! 1. We use the values in table 2 of Kim et al. (2012)
for (1+Fc)/fesc. We divide the Millennium-II simulation box
into 2563 cells, yielding cell side lengths of 0.3906h−1Mpc
and comoving volumes of 0.0596h−3Mpc3.

Based on equation (4), individual cells can have Qcell >
1. On the other hand, cells with Qcell < 1 may be ionized
by photons produced in a neighbouring cell. In order to find
the extent of ionizded regions we therefore filter the Qcell

field using a sequence of real space top hat filters of ra-
dius R (with 0.3906 < R < 100h−1Mpc), producing one
smoothed ionization field QR per radius. At each point in
the simulation box we find the largest R for which the fil-
tered ionization field is greater that unity (i.e. ionized with
QR > 1). All points within the radius R around this point
are considered ionized. This procedure forms the position
dependent ionization fraction 0 " Q " 1, which describes
the ionization structure of the IGM during reionization.

3.2 The cross-power spectrum

The 21cm brightness temperature contrast may be written
as Kim et al. (2012)

∆T21 = T0(z)[1−Q](1 + δDM,cell), (6)

where T0(z) = 23.8 mK
(

1+z
10

) 1
2 . Using equation (6) we can

define the 21cm fluctuation as

δ21(r) =
∆T21(r)− ∆̄T 21

∆̄T 21

, (7)

where ∆̄T 21 is the mean temperature contrast of 21cm
brightness. Similarly to calculate cross-power spectrum be-
tween 21cm fluctuation and galaxy density distribution, a
galaxy overdensity is given by

δgal(r) =
ρgal(r)− ρ̄gal

ρ̄gal
, (8)

where ρgal(r) is a galaxy density field and ρ̄gal is mean den-
sity. The cross-power spectrum is defined to be

〈

δ̂21(k1)δ̂gal(k2)
〉

≡ (2π)3δD(k1 + k2)P21,gal(k1), (9)

where δD(k) is the Dirac delta function, and we have used
the Fourier transform,

δ̂(k) =
1
V

∫

d3r e ik·rδ(r), (10)

δ(r) =
V

(2π)3

∫

d3k e−ik·rδ̂(k), (11)

where V is a finite box of volume with periodic boundary
condition. The dimensionless cross-power spectrum is given
by

∆2
21,gal(k) =

k3

(2π2)
P21,gal(k)
T 2
0 (z)

. (12)

3.3 The cross-correlation function

The cross-correlation function is defined as

ξ1,2(r) = 〈δ1(x)δ2(x+ r)〉 . (13)

We calculate the cross-correlation function using the fourier
transform,

ξ21,gal(r) =
V

(2π)3

∫

P21,gal(k)
sinkr
kr

4πk2dk , (14)

where V is a finite box of volume. We also calculate the
cross-correlation coefficient,

r21,gal(k) =
P21,gal(k)

√

P21(k)Pgal(k)
. (15)

4 CORRELATION BETWEEN 21CM

EMISSION AND GALAXIES

In this section we present predictions for the cross-power
spectrum, cross-correlation function and cross-correlation
coefficient between 21cm emission and galaxies as a function
of redshift, luminosity, and host halo mass for the galaxy

Figure 2 shows the redshift evolution of the cross-power
spectrum and cross-correlation coefficient (left panel), and of
cross-correlation function (right panel) between 21cm emis-
sion and all galaxies in the model. On small scales galaxies
and 21cm emission are anti-correlated, while on large scales
we find weak correlation. The regions are separated by a
transition wavenumber at which the cross-correlation coeffi-
cient and cross-correlation function change from negative to
positive. The size of ionized regions generated by galaxies in-
creases as the Universe evolves. Since galaxies are correlated
with 21cm emission on scales larger than the ionized region,
but anti correlated on smaller scales, we find that the transi-
tion wavenumber from negative to positive cross-correlation
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hydrogen atom up to reionization and NHI,cell is the number
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is calculated as
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volume of the cell. Self-reionization of a cell occurs when
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into 2563 cells, yielding cell side lengths of 0.3906h−1Mpc
and comoving volumes of 0.0596h−3Mpc3.

Based on equation (4), individual cells can have Qcell >
1. On the other hand, cells with Qcell < 1 may be ionized
by photons produced in a neighbouring cell. In order to find
the extent of ionizded regions we therefore filter the Qcell

field using a sequence of real space top hat filters of ra-
dius R (with 0.3906 < R < 100h−1Mpc), producing one
smoothed ionization field QR per radius. At each point in
the simulation box we find the largest R for which the fil-
tered ionization field is greater that unity (i.e. ionized with
QR > 1). All points within the radius R around this point
are considered ionized. This procedure forms the position
dependent ionization fraction 0 " Q " 1, which describes
the ionization structure of the IGM during reionization.

3.2 The cross-power spectrum

The 21cm brightness temperature contrast may be written
as Kim et al. (2012)

∆T21 = T0(z)[1−Q](1 + δDM,cell), (6)

where T0(z) = 23.8 mK
(

1+z
10

) 1
2 . Using equation (6) we can

define the 21cm fluctuation as

δ21(r) =
∆T21(r)− ∆̄T 21

∆̄T 21

, (7)

where ∆̄T 21 is the mean temperature contrast of 21cm
brightness. Similarly to calculate cross-power spectrum be-
tween 21cm fluctuation and galaxy density distribution, a
galaxy overdensity is given by

δgal(r) =
ρgal(r)− ρ̄gal

ρ̄gal
, (8)

where ρgal(r) is a galaxy density field and ρ̄gal is mean den-
sity. The cross-power spectrum is defined to be

〈

δ̂21(k1)δ̂gal(k2)
〉

≡ (2π)3δD(k1 + k2)P21,gal(k1), (9)

where δD(k) is the Dirac delta function, and we have used
the Fourier transform,

δ̂(k) =
1
V

∫

d3r e ik·rδ(r), (10)

δ(r) =
V

(2π)3

∫

d3k e−ik·rδ̂(k), (11)

where V is a finite box of volume with periodic boundary
condition. The dimensionless cross-power spectrum is given
by

∆2
21,gal(k) =

k3

(2π2)
P21,gal(k)
T 2
0 (z)

. (12)

3.3 The cross-correlation function

The cross-correlation function is defined as

ξ1,2(r) = 〈δ1(x)δ2(x+ r)〉 . (13)

We calculate the cross-correlation function using the fourier
transform,

ξ21,gal(r) =
V

(2π)3

∫

P21,gal(k)
sinkr
kr

4πk2dk , (14)

where V is a finite box of volume. We also calculate the
cross-correlation coefficient,

r21,gal(k) =
P21,gal(k)

√

P21(k)Pgal(k)
. (15)

4 CORRELATION BETWEEN 21CM

EMISSION AND GALAXIES

In this section we present predictions for the cross-power
spectrum, cross-correlation function and cross-correlation
coefficient between 21cm emission and galaxies as a function
of redshift, luminosity, and host halo mass for the galaxy

Figure 2 shows the redshift evolution of the cross-power
spectrum and cross-correlation coefficient (left panel), and of
cross-correlation function (right panel) between 21cm emis-
sion and all galaxies in the model. On small scales galaxies
and 21cm emission are anti-correlated, while on large scales
we find weak correlation. The regions are separated by a
transition wavenumber at which the cross-correlation coeffi-
cient and cross-correlation function change from negative to
positive. The size of ionized regions generated by galaxies in-
creases as the Universe evolves. Since galaxies are correlated
with 21cm emission on scales larger than the ionized region,
but anti correlated on smaller scales, we find that the transi-
tion wavenumber from negative to positive cross-correlation
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∫ ∞

νthresh

Lν,i(t)
hν

dν, (3)

Lν,i is the spectral energy distribution of galaxy i and νthresh
is the Lyman-limit frequency, hνthresh = 13.6 eV. Note that
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for (1+Fc)/fesc. We divide the Millennium-II simulation box
into 2563 cells, yielding cell side lengths of 0.3906h−1Mpc
and comoving volumes of 0.0596h−3Mpc3.

Based on equation (4), individual cells can have Qcell >
1. On the other hand, cells with Qcell < 1 may be ionized
by photons produced in a neighbouring cell. In order to find
the extent of ionizded regions we therefore filter the Qcell

field using a sequence of real space top hat filters of ra-
dius R (with 0.3906 < R < 100h−1Mpc), producing one
smoothed ionization field QR per radius. At each point in
the simulation box we find the largest R for which the fil-
tered ionization field is greater that unity (i.e. ionized with
QR > 1). All points within the radius R around this point
are considered ionized. This procedure forms the position
dependent ionization fraction 0 " Q " 1, which describes
the ionization structure of the IGM during reionization.

3.2 The cross-power spectrum

The 21cm brightness temperature contrast may be written
as Kim et al. (2012)

∆T21 = T0(z)[1−Q](1 + δDM,cell), (6)

where T0(z) = 23.8 mK
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1+z
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) 1
2 . Using equation (6) we can

define the 21cm fluctuation as

δ21(r) =
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, (7)

where ∆̄T 21 is the mean temperature contrast of 21cm
brightness. Similarly to calculate cross-power spectrum be-
tween 21cm fluctuation and galaxy density distribution, a
galaxy overdensity is given by

δgal(r) =
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, (8)

where ρgal(r) is a galaxy density field and ρ̄gal is mean den-
sity. The cross-power spectrum is defined to be
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≡ (2π)3δD(k1 + k2)P21,gal(k1), (9)

where δD(k) is the Dirac delta function, and we have used
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∫

d3r e ik·rδ(r), (10)
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∫
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where V is a finite box of volume with periodic boundary
condition. The dimensionless cross-power spectrum is given
by
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. (12)

3.3 The cross-correlation function

The cross-correlation function is defined as

ξ1,2(r) = 〈δ1(x)δ2(x+ r)〉 . (13)

We calculate the cross-correlation function using the fourier
transform,
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(2π)3

∫
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4πk2dk , (14)

where V is a finite box of volume. We also calculate the
cross-correlation coefficient,

r21,gal(k) =
P21,gal(k)

√

P21(k)Pgal(k)
. (15)

4 CORRELATION BETWEEN 21CM

EMISSION AND GALAXIES

In this section we present predictions for the cross-power
spectrum, cross-correlation function and cross-correlation
coefficient between 21cm emission and galaxies as a function
of redshift, luminosity, and host halo mass for the galaxy

Figure 2 shows the redshift evolution of the cross-power
spectrum and cross-correlation coefficient (left panel), and of
cross-correlation function (right panel) between 21cm emis-
sion and all galaxies in the model. On small scales galaxies
and 21cm emission are anti-correlated, while on large scales
we find weak correlation. The regions are separated by a
transition wavenumber at which the cross-correlation coeffi-
cient and cross-correlation function change from negative to
positive. The size of ionized regions generated by galaxies in-
creases as the Universe evolves. Since galaxies are correlated
with 21cm emission on scales larger than the ionized region,
but anti correlated on smaller scales, we find that the transi-
tion wavenumber from negative to positive cross-correlation
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observational constraints on reionization. Here, we vary the
value of fesc, assumed Fc=1, as a function of redshift or
host dark matter halo masses to see the effect of histories of
reionization onto the 21cm power spectrum.

Based on equation (4), individual cells can have Qcell >
1. On the other hand, cells with Qcell < 1 may be ionized by
photons produced in a neighbouring cell. In order to find the
extent of ionized regions we therefore filter the Qcell field us-
ing a sequence of real space top hat filters of radius R (with
0.3906 < R < 100h−1Mpc), producing one smoothed ion-
ization field QR per radius. At each point in the simulation
box we find the largest R for which the filtered ionization
field is greater that unity (i.e. ionized with QR > 1). All
points within the radius R around this point are considered
ionized. This procedure forms the position dependent ion-
ization fraction 0 ! Q ! 1, which describes the ionization
structure of the IGM during reionization.

3.2 The cross-power spectrum

To calculate cross-power spectrum between 21cm fluctua-
tion and galaxy density distribution, we start from a galaxy
overdensity

δgal(r) =
ρgal(r)− ρ̄gal

ρ̄gal
, (6)

where ρgal(r) is a galaxy density field and ρ̄gal is mean den-
sity. The 21cm brightness temperature contrast may be writ-
ten as (Kim et al. (2012))

∆T21 = 23.8mK

(

1 + z
10

) 1
2

[1−Q](1 + δDM,cell). (7)

By using equation (7) we can define the 21cm fluctuation as

δ21(r) =
∆T21(r)− ∆̄T 21

∆̄T 21

, (8)

where ∆̄T 21 is the mean temperature contrast of 21cm
brightness. With the Fourier transform,

δ̂(k) =
1
V

∫

d3r e ik·rδ(r), (9)

δ(r) =
V

(2π)3

∫

d3k e−ik·rδ̂(k), (10)

where V is a finite box of volume with periodic boundary
condition, the cross-power spectrum is defined to be

〈

δ̂21(k1)δ̂gal(k2)
〉

≡ (2π)3δD(k1 + k2)P21,gal(k1), (11)

where δD(k) is the Dirac delta function. This definition can
be applied to auto power spectrum such as the galaxy and
21cm power spectrum. The dimensionless power spectrum
is given by

∆2(k) =
k3

(2π2)
P (k). (12)

3.3 The cross-correlation function

The cross-correlation function is defined as

ξ(r) = 〈δ1(x)δ2(x+ r)〉 . (13)

To improve the efficiency for computing time, rather
than calculating cross-correlation function directly, we cal-
culate it by using the fourier transform,

ξ(r) =
V

(2π)3

∫

P (k)
sinkr
kr

4πk2dk , (14)

where V is a finite box of volume. We also calculate the
cross-correlation coefficient,

r(k) =
P21,gal(k)

√

P21(k)Pgal(k)
. (15)

3.4 Error estimate in the cross-correlation

coefficient

In order to estimate the sensitivity of the statistical signifi-
cance where future surveys can detect the cross-power spec-
trum, we calculate the error of the cross-correlation coeffi-
cient. These calculations have been presented by a number
of authors (e.g. McQuinn et al. (2006); Furlanetto & Lidz
(2007b); Lidz et al. (2009b); Wyithe et al. (2008)). Here we
closely follow the procedure from Lidz et al. (2009b) and
Wyithe et al. (2008). For convenience we use the same no-
tation in Lidz et al. (2009b),

r(k) =
P21,gal(k)

√

P21(k)Pgal(k)
≡

A(k)
√

B(k)C(k)
. (16)

The error of the cross-correlation coefficient can be writ-
ten as

σr

r2
(k) =

σ2
A

A2
(k) +

σ2
B

4B2
(k) +

σ2
C

4C2
(k)

−
σ2
AB

AB
(k)−

σ2
AC

AC
(k) +

σ2
BC

2BC
(k). (17)

This equation has variances of the cross-power spectrum be-
tween 21cm and galaxy, and the auto-power spectrum of the
21cm and galaxy. It also has the covariance between each
different pairs of power spectra. The components of equa-
tion (17) are given by

σ2
A(k, µ) = var[P21,gal(k, µ)]

=
1
2
[P21,gal(k, µ) + σB(k, µ)σC(k, µ)] , (18)

σ2
B(k, µ) = var[P21(k, µ)]

=
1
NC

[

P21(k, µ) +
T 2
sys

Btint

D2∆D
n(k⊥)

(

λ2

Ae

)2
]2

,(19)

σ2
C(k, µ) = var[Pgal(k, µ)]

=
[

Pgal(k, µ) + n−1
gale

k2
‖σ

2
χ

]2

, (20)

σ2
AB(k, µ) = cov[P21,gal(k, µ),P21(k, µ)]

= [P21,gal(k, µ) + P21(k, µ)] , (21)

σ2
AC(k, µ) = cov[P21,gal(k, µ),Pgal(k, µ)]

= [P21,gal(k, µ) + Pgal(k, µ)] , (22)
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observational constraints on reionization. Here, we vary the
value of fesc, assumed Fc=1, as a function of redshift or
host dark matter halo masses to see the effect of histories of
reionization onto the 21cm power spectrum.

Based on equation (4), individual cells can have Qcell >
1. On the other hand, cells with Qcell < 1 may be ionized by
photons produced in a neighbouring cell. In order to find the
extent of ionized regions we therefore filter the Qcell field us-
ing a sequence of real space top hat filters of radius R (with
0.3906 < R < 100h−1Mpc), producing one smoothed ion-
ization field QR per radius. At each point in the simulation
box we find the largest R for which the filtered ionization
field is greater that unity (i.e. ionized with QR > 1). All
points within the radius R around this point are considered
ionized. This procedure forms the position dependent ion-
ization fraction 0 ! Q ! 1, which describes the ionization
structure of the IGM during reionization.

3.2 The cross-power spectrum

To calculate cross-power spectrum between 21cm fluctua-
tion and galaxy density distribution, we start from a galaxy
overdensity

δgal(r) =
ρgal(r)− ρ̄gal

ρ̄gal
, (6)

where ρgal(r) is a galaxy density field and ρ̄gal is mean den-
sity. The 21cm brightness temperature contrast may be writ-
ten as (Kim et al. (2012))

∆T21 = 23.8mK

(

1 + z
10

) 1
2

[1−Q](1 + δDM,cell). (7)

By using equation (7) we can define the 21cm fluctuation as

δ21(r) =
∆T21(r)− ∆̄T 21

∆̄T 21

, (8)

where ∆̄T 21 is the mean temperature contrast of 21cm
brightness. With the Fourier transform,

δ̂(k) =
1
V

∫

d3r e ik·rδ(r), (9)

δ(r) =
V

(2π)3

∫

d3k e−ik·rδ̂(k), (10)

where V is a finite box of volume with periodic boundary
condition, the cross-power spectrum is defined to be

〈

δ̂21(k1)δ̂gal(k2)
〉

≡ (2π)3δD(k1 + k2)P21,gal(k1), (11)

where δD(k) is the Dirac delta function. This definition can
be applied to auto power spectrum such as the galaxy and
21cm power spectrum. The dimensionless power spectrum
is given by

∆2(k) =
k3

(2π2)
P (k). (12)

3.3 The cross-correlation function

The cross-correlation function is defined as

ξ(r) = 〈δ1(x)δ2(x+ r)〉 . (13)

To improve the efficiency for computing time, rather
than calculating cross-correlation function directly, we cal-
culate it by using the fourier transform,

ξ(r) =
V

(2π)3

∫

P (k)
sinkr
kr

4πk2dk , (14)

where V is a finite box of volume. We also calculate the
cross-correlation coefficient,

r(k) =
P21,gal(k)

√

P21(k)Pgal(k)
. (15)

3.4 Error estimate in the cross-correlation

coefficient

In order to estimate the sensitivity of the statistical signifi-
cance where future surveys can detect the cross-power spec-
trum, we calculate the error of the cross-correlation coeffi-
cient. These calculations have been presented by a number
of authors (e.g. McQuinn et al. (2006); Furlanetto & Lidz
(2007b); Lidz et al. (2009b); Wyithe et al. (2008)). Here we
closely follow the procedure from Lidz et al. (2009b) and
Wyithe et al. (2008). For convenience we use the same no-
tation in Lidz et al. (2009b),

r(k) =
P21,gal(k)

√

P21(k)Pgal(k)
≡

A(k)
√

B(k)C(k)
. (16)

The error of the cross-correlation coefficient can be writ-
ten as

σr

r2
(k) =

σ2
A

A2
(k) +

σ2
B

4B2
(k) +

σ2
C

4C2
(k)

−
σ2
AB

AB
(k)−

σ2
AC

AC
(k) +

σ2
BC

2BC
(k). (17)

This equation has variances of the cross-power spectrum be-
tween 21cm and galaxy, and the auto-power spectrum of the
21cm and galaxy. It also has the covariance between each
different pairs of power spectra. The components of equa-
tion (17) are given by

σ2
A(k, µ) = var[P21,gal(k, µ)]

=
1
2
[P21,gal(k, µ) + σB(k, µ)σC(k, µ)] , (18)

σ2
B(k, µ) = var[P21(k, µ)]

=
1
NC

[

P21(k, µ) +
T 2
sys

Btint

D2∆D
n(k⊥)

(

λ2

Ae

)2
]2

,(19)

σ2
C(k, µ) = var[Pgal(k, µ)]

=
[

Pgal(k, µ) + n−1
gale

k2
‖σ

2
χ

]2

, (20)

σ2
AB(k, µ) = cov[P21,gal(k, µ),P21(k, µ)]

= [P21,gal(k, µ) + P21(k, µ)] , (21)

σ2
AC(k, µ) = cov[P21,gal(k, µ),Pgal(k, µ)]

= [P21,gal(k, µ) + Pgal(k, µ)] , (22)
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observational constraints on reionization. Here, we vary the
value of fesc, assumed Fc=1, as a function of redshift or
host dark matter halo masses to see the effect of histories of
reionization onto the 21cm power spectrum.

Based on equation (4), individual cells can have Qcell >
1. On the other hand, cells with Qcell < 1 may be ionized by
photons produced in a neighbouring cell. In order to find the
extent of ionized regions we therefore filter the Qcell field us-
ing a sequence of real space top hat filters of radius R (with
0.3906 < R < 100h−1Mpc), producing one smoothed ion-
ization field QR per radius. At each point in the simulation
box we find the largest R for which the filtered ionization
field is greater that unity (i.e. ionized with QR > 1). All
points within the radius R around this point are considered
ionized. This procedure forms the position dependent ion-
ization fraction 0 ! Q ! 1, which describes the ionization
structure of the IGM during reionization.

3.2 The cross-power spectrum

To calculate cross-power spectrum between 21cm fluctua-
tion and galaxy density distribution, we start from a galaxy
overdensity

δgal(r) =
ρgal(r)− ρ̄gal

ρ̄gal
, (6)

where ρgal(r) is a galaxy density field and ρ̄gal is mean den-
sity. The 21cm brightness temperature contrast may be writ-
ten as (Kim et al. (2012))

∆T21 = 23.8mK

(

1 + z
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) 1
2

[1−Q](1 + δDM,cell). (7)

By using equation (7) we can define the 21cm fluctuation as

δ21(r) =
∆T21(r)− ∆̄T 21

∆̄T 21

, (8)

where ∆̄T 21 is the mean temperature contrast of 21cm
brightness. With the Fourier transform,

δ̂(k) =
1
V

∫

d3r e ik·rδ(r), (9)

δ(r) =
V

(2π)3

∫

d3k e−ik·rδ̂(k), (10)

where V is a finite box of volume with periodic boundary
condition, the cross-power spectrum is defined to be

〈

δ̂21(k1)δ̂gal(k2)
〉

≡ (2π)3δD(k1 + k2)P21,gal(k1), (11)

where δD(k) is the Dirac delta function. This definition can
be applied to auto power spectrum such as the galaxy and
21cm power spectrum. The dimensionless power spectrum
is given by

∆2(k) =
k3

(2π2)
P (k). (12)

3.3 The cross-correlation function

The cross-correlation function is defined as

ξ(r) = 〈δ1(x)δ2(x+ r)〉 . (13)

To improve the efficiency for computing time, rather
than calculating cross-correlation function directly, we cal-
culate it by using the fourier transform,

ξ(r) =
V

(2π)3

∫

P (k)
sinkr
kr

4πk2dk , (14)

where V is a finite box of volume. We also calculate the
cross-correlation coefficient,

r(k) =
P21,gal(k)

√

P21(k)Pgal(k)
. (15)

3.4 Error estimate in the cross-correlation

coefficient

In order to estimate the sensitivity of the statistical signifi-
cance where future surveys can detect the cross-power spec-
trum, we calculate the error of the cross-correlation coeffi-
cient. These calculations have been presented by a number
of authors (e.g. McQuinn et al. (2006); Furlanetto & Lidz
(2007b); Lidz et al. (2009b); Wyithe et al. (2008)). Here we
closely follow the procedure from Lidz et al. (2009b) and
Wyithe et al. (2008). For convenience we use the same no-
tation in Lidz et al. (2009b),

r(k) =
P21,gal(k)

√

P21(k)Pgal(k)
≡

A(k)
√

B(k)C(k)
. (16)

The error of the cross-correlation coefficient can be writ-
ten as
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(k) =

σ2
A
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(k) +
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B
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(k) +
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C
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(k)

−
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(k)−
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AC
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(k) +
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This equation has variances of the cross-power spectrum be-
tween 21cm and galaxy, and the auto-power spectrum of the
21cm and galaxy. It also has the covariance between each
different pairs of power spectra. The components of equa-
tion (17) are given by

σ2
A(k, µ) = var[P21,gal(k, µ)]

=
1
2
[P21,gal(k, µ) + σB(k, µ)σC(k, µ)] , (18)

σ2
B(k, µ) = var[P21(k, µ)]

=
1
NC

[

P21(k, µ) +
T 2
sys

Btint

D2∆D
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(

λ2

Ae

)2
]2

,(19)
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C(k, µ) = var[Pgal(k, µ)]

=
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Pgal(k, µ) + n−1
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‖σ

2
χ

]2

, (20)

σ2
AB(k, µ) = cov[P21,gal(k, µ),P21(k, µ)]

= [P21,gal(k, µ) + P21(k, µ)] , (21)

σ2
AC(k, µ) = cov[P21,gal(k, µ),Pgal(k, µ)]

= [P21,gal(k, µ) + Pgal(k, µ)] , (22)
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σ2
AC(k, µ) = cov[P21(k, µ),Pgal(k, µ)]

= [P21(k, µ) + Pgal(k, µ)] , (23)

where µ is the cosine of the angle between k and the line
of sight. We simply use a relation, P (k, µ) = (1 + µ2)P (k),
between P (k, µ) and P (k) from the simulation.

In equation (19), the quantity NC =
2πk2sinθdkdθ[Vsurvey/(2π)

3] represent the number
of modes observed within a k-space volume element
d3k = 2πk2sinθdkdθ, where Vsurvey is the effective survey
volume for a radio telescope. The first term in equation (19)
come from a sample variance within the finite volume of the
survey and the second term come from the thermal noise of
the instrument. We have assumed specifications of MWA for
the calculation of thermal noise. In the thermal noise term,
Tsys ∼ 250[(1 + z)/7]2.6K denotes the system temperature
of the telescope; B = 6MHz is the survey bandpass; tint
is the integration observing time. We use 1000 hours total
observing time in this calculation; D and ∆D are the
comoving distance to the survey volume and the comoving

depth of the survey volume, 1.7 B
0.1×106

√

1+z
10

(

ΩMh
2

0.15

)

, re-

spectively; n(k⊥) denotes the density of baselines observing
the transverse component of the wave vector (Morales
(2005); Bowman et al. (2006)), where k⊥ =

√

1− µ2k.
The maximum value of the transverse component of the
wave vector is k⊥,max = 2πLmax/(Dλ), where Lmax = 750m
is the maximum baseline distance in the antenna array
; the observed wavelength is λ = 0.21m × (1 + z); Ae

is the effective collecting area of each antenna. We use
Ae ∼ Ndipλ/4 (Bowman et al. (2006)), where Ndip = 16 is
the number of dipole.

The error of galaxy power spectrum is expressed in
equation (20). The galaxy shot-noise is contained by ngal

which is the number density of galaxies observable; σ2
χ =

cσz/H(z) denotes the galaxy redshift error in h−1Mpc unit;
k‖ = µk.

From those of equations (18- 23), we can compute the
errors of the power spectra averaged over a spherical shell of
the logarithmic width ε = dlnk for individual k-modes. For
example, the error of the cross-power spectrum is given by

1
σ2
A(k)

=
∑

µ

εk3Vsurvey

4π2

∆µ
σ2
A(k, µ)

. (24)

4 RESULTS

We present the predictions for cross-power spectrum with
cross-correlation coefficient and cross-correlation function as
a function of redshift, luminosity, and host halo mass in
§ 4.1. Also we show the cross-correlation coefficient predic-
tions with a detectability based on the MWA for the 21cm
power spectrum and the Subaru (or future Subaru-like) sur-
veys for galaxy power spectrum in § 4.2

4.1 Correlation between 21cm and galaxy

In this section we probe the cross-power spectrum predic-
tions between 21cm (using the Lagos model in Kim et al.

(2012)) and selected galaxy as a function of redshift, lumi-
nosity, and also host halo mass for the galaxy (predicted by
the Lagos model).

Figure. 1 shows the redshift evolution of cross-power
spectrum with cross-correlation coefficient (left panel) and
cross-correlation function (right panel) between 21cm fluctu-
ation and galaxy density field at different redshift. Generally,
on the small scale (r ! 40h−1Mpc) galaxies and 21cm have
anti-correlation and on the middle scale (40h−1Mpc ! r !

70h−1Mpc) have weak correlation. These trends can also be
detect in the cross-power spectrum. On the small scale of
cross-correlation function, the amplitude of anti-correlation
increase gradually and decrease again with increasing sepa-
ration r. The cross-correlation coefficient shown in left panel
of Figure. 1 shows a trend of turning wavenumber, k, from
negative cross-correlation coefficient to positive which in-
creases as redshift decreases. The cross-correlation function
shows much clearly this trend in the right panel of Fig. 1.
The ionised region generated by the photons produced from
the galaxies is increased as the Universe evolves. Therefore
the transition wavenumber from negative to positive on the
cross-correlation coefficient and anti-correlation scale in the
cross-correlation function increase as redshift decreases. The
size of ionization region is roughly related to the the tran-
sition wavenumber from negative to positive on the cross-
correlation coefficient or anti-correlation scale in the cross-
correlation function.

In Figure. 2 we show the predictions only for the galax-
ies which has UV magnitude less than −18 for the different
redshifts. The overall trend is same as figure 1 but it shows
much clearer trend than figure 1. The reason is that the faint
galaxies (for example, UV magnitue greater than -18) can
reside in the neutral region because the produced photons
from the galaxies cannot fully ionise the neutral hydrogen
in the cell. So the faint galaxies in the neutral region make
weaker the trend.

Figure. 3 shows the comparison of cross-power spec-
trum and cross-correlation function between different UV
luminosity threshold at z = 7.272. This reveal the trend
that the anti-correlation scale (the wavenumber of transi-
tion from negative cross-correlation coefficient to positive)
is nearly similar for four different luminosity selected galaxy
samples, but the more bright galaxies have the more strong
anti-correlation. The same trend also is shown in figure. 4
we compare the results from the calculation with different
host halo masses of the galaxies. This means that the lumi-
nous and resided in massive halo galaxies have bigger pos-
sibility inside ionised region. Also we could say the ionised
region mainly produced by the luminous galaxies or galaxies
resided in massive halo.

4.2 Prediction of detectability from future

surveys

Figure. 6 shows the predictions of error estimations for
spherical bins of logarithmic width ε = 0.5 at z = 7.272 for
the two different galaxy surveys with the MWA. We con-
sider two kinds of galaxy abundance values which are cor-
responding to Subaru-like survey (ngal = 1.6× 10−4Mpc−3)
and futuristic survey (ngal = 1.6 × 10−2Mpc−3) in Lidz
et al. (2009a). To find this value we choose the galax-
ies which have, respectively, the UV magnitude less than
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Figure 3. The same as Fig. 2, but results are computed from galaxies selected to have UV magnitudes less than −18.

Figure 4. Comparison of the cross-power spectrum and cross-correlation function for different UV magnitude limits at z = 7.272. Left
panel: the absolute value of the cross-power spectrum (top) and cross-correlation coefficient (bottom). Right panel: the corresponding
cross-correlation function. In each panel, the thick solid lines (black) show the cross-correlation using all galaxies from the simulation.
The dotted (red), long dashed (orange), and dot-dashed (sky-blue) lines show the cross-correlation using galaxies which are, respectively,
more luminous than a UV magnitude of -18, -19, and -20.

the cross-correlation coefficient,

r21,gal(k) =
P21,gal(k)

√

P21(k)Pgal(k)
≡

A(k)
√

B(k)C(k)
. (16)

The error on the cross-correlation coefficient can be

written as

σ2
r

r2
(k) =

σ2
A

A2
(k) +

σ2
B

4B2
(k) +

σ2
C

4C2
(k)

−
σ2
AB

AB
(k)−

σ2
AC

AC
(k) +

σ2
BC

2BC
(k). (17)

This equation has variances of the cross-power spectrum be-
tween 21cm and galaxy, and the auto-power spectrum of the
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panel: the absolute value of the cross-power spectrum (top) and cross-correlation coefficient (bottom). Right panel: the corresponding
cross-correlation function. In each panel, the thick solid lines (black) show the cross-correlation using all galaxies from the simulation.
The dotted (red), long dashed (orange), and dot-dashed (sky-blue) lines show the cross-correlation using galaxies which are, respectively,
more luminous than a UV magnitude of -18, -19, and -20.

the cross-correlation coefficient,

r21,gal(k) =
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√

P21(k)Pgal(k)
≡

A(k)
√

B(k)C(k)
. (16)

The error on the cross-correlation coefficient can be

written as

σ2
r
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σ2
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A2
(k) +
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(k) +
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This equation has variances of the cross-power spectrum be-
tween 21cm and galaxy, and the auto-power spectrum of the
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Figure 5. The same as Fig.4 but results are computed based on galaxies hosted by different halo mass. In each panel, the thick solid
line (black) shows the cross-correlation using all galaxies from the simulation. The dotted (dark brown), dot-dashed (brown), dashed
(orange), long-dashed (ivory) lines show the cross-correlation using galaxies which are included in 109, 1010, 1011 and 1012 solar mass,
respectively.

Figure 6. The same as Fig.4 but results are computed based on galaxies hosted by different halo mass. In each panel, the thick solid
line (black) shows the cross-correlation using all galaxies from the simulation. The dotted (dark brown), dot-dashed (brown), dashed
(orange), long-dashed (ivory) lines show the cross-correlation using galaxies which are included in 109, 1010, 1011 and 1012 solar mass,
respectively.

21cm and galaxy. It also has the covariance between differ-
ent pairs of power spectra. The components of equation (17)

are given by

σ2
A(k, µ) = var[P21,gal(k, µ)]

=
1
2
[P21,gal(k, µ) + σB(k, µ)σC(k, µ)] , (18)
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σ2
B(k, µ) = var[P21(k, µ)]

=

[

P21(k, µ) +
T 2
sys

T 2
0

1
Btint

D2∆D
n(k⊥)

(

λ2

Ae

)2
]2

,(19)

σ2
C(k, µ) = var[Pgal(k, µ)]

=
[

Pgal(k, µ) + n−1
gale

k2
‖σ

2
χ

]2

, (20)

σ2
AB(k, µ) = cov[P21,gal(k, µ),P21(k, µ)]

= [P21,gal(k, µ) + P21(k, µ)] , (21)

σ2
AC(k, µ) = cov[P21,gal(k, µ),Pgal(k, µ)]

= [P21,gal(k, µ) + Pgal(k, µ)] , (22)

and

σ2
BC(k, µ) = cov[P21(k, µ),Pgal(k, µ)]

= [P21(k, µ) + Pgal(k, µ)] , (23)

where µ is the cosine of the angle between k and the line
of sight. To introduce large scale redshift space distortions
we use the relation, P (k, µ) = (1 + µ2)P (k), between the
redshift space power spectrum and the real space (Kaiser
1987).

The first term in equation (19) comes from a sample
variance within the finite volume of the survey and the
second term comes from the thermal noise of the instru-
ment. We have assumed specifications of the MWA for the
calculation of thermal noise. In the thermal noise term,
Tsys ∼ 250[(1 + z)/7]2.6K denotes the system temperature
of the telescope; B = 6MHz is the survey bandpass; tint
is the integration observing time. We use 1000 hours total
observing time in this calculation; D and∆D are the comov-
ing distance to the survey volume and the comoving depth
of the survey volume, respectively; n(k⊥) denotes the den-
sity of baselines observing the transverse component of the
wave vector (Morales (2005); Bowman et al. (2006)), where
k⊥ =

√

1− µ2k. The maximum value of the transverse com-
ponent of the wave vector is k⊥,max = 2πLmax/(Dλ), where
Lmax = 750m is the maximum baseline distance in the an-
tenna array, the minimum line-of-sight wavenumber is set
by the bandpass kmin = 2π/∆D ; the observed wavelength
is λ = 0.21m × (1 + z); Ae is the effective collecting area of
each antenna. We use Ae ∼ Ndipλ/4 (Bowman et al. (2006)),
where Ndip = 16 is the number of dipole.

The error on the galaxy power spectrum is expressed in
equation (20). The galaxy shot-noise is dependent on ngal,
the number density of galaxies observable, k‖ = µk, and
σ2
χ = cσz/H(z) denotes the galaxy redshift error in h−1Mpc

units. In most examples we use σz = 0.01, which is the
value used in Lidz et al. (2009b). We discuss the relation
between the redshift error and the error of cross-correlation
coefficient in § 5.2

From equations (18- 23), we compute the errors of the
power spectra averaged over a spherical shell of the logarith-
mic width ε = dlnk for individual k-modes. For example, the
error of the cross-power spectrum is given by

1
σ2
A(k)

=
∑

µ

εk3Vsurvey

4π2

∆µ
σ2
A(k, µ)

, (24)

where Vsurvey is the effective survey volume for a radio tele-
scope, V = D2∆D(λ2/Ae).

Figure 9. The 21cm power spectrum with estimated error, based
on a 800 deg2 survey area, at z = 7.272. The brown color repre-
sents the power spectrum from our model including supernova
feedback with Vcut = 30km/s. The light grey and dark grey
lines represent power spectrum from the NOSN models with
Vcut = 30km/s and no suppression, respectively.

5.2 Observational uncertainty for future surveys

We consider two different galaxy densities for surveys in
combination with the MWA. Following Lidz et al. (2009a)
we consider galaxy abundance values which correspond to a
futuristic survey (ngal = 1.6 × 10−2Mpc−3) and a Subaru-
like survey (ngal = 1.6 × 10−4Mpc−3). In our model these
values correspond to galaxies which have, respectively, UV
magnitudes less than −15.3 and −19.4.

Figure 7 shows the predictions of error estimations for
spherical bins of logarithmic width ε = 0.5 at z = 7.272 for
the two different galaxy surveys combined with the MWA.
The cross-correlation coefficient with each galaxy abundance
are represented. Here the cross-correlation assume a galaxy
survey field covering the full MWA. These illustrate that
the cross correlation could be detected at high significance
in either case. We note that the deeper survey does not lead
to grewter accuracy, owing to the lower bias of the fainter
galaxies.

Figure 8 shows results for different feedback models in
each observational examples. Left panels show the results
from a futuristic survey and right panels show a Subaru-like
survey. We also compare the results from different survey
areas, 800 deg2 and 2 deg2. In every case, the results from
our default model with SNe feedback have smaller error bars
than the NOSN models.

To understand this we show in figure 9 the 21cm power
spectrum with estimated error based on equation (19) for
the cases including different feedback processes. The 21cm
power spectra show obvious differences between the models
for supernova feedback for the shape and amplitude of the
power spectrum, especially at large scales. Figure 8 and 9
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where µ is the cosine of the angle between k and the line
of sight. To introduce large scale redshift space distortions
we use the relation, P (k, µ) = (1 + µ2)P (k), between the
redshift space power spectrum and the real space (Kaiser
1987).

The first term in equation (19) comes from a sample
variance within the finite volume of the survey and the
second term comes from the thermal noise of the instru-
ment. We have assumed specifications of the MWA for the
calculation of thermal noise. In the thermal noise term,
Tsys ∼ 250[(1 + z)/7]2.6K denotes the system temperature
of the telescope; B = 6MHz is the survey bandpass; tint
is the integration observing time. We use 1000 hours total
observing time in this calculation; D and∆D are the comov-
ing distance to the survey volume and the comoving depth
of the survey volume, respectively; n(k⊥) denotes the den-
sity of baselines observing the transverse component of the
wave vector (Morales (2005); Bowman et al. (2006)), where
k⊥ =

√

1− µ2k. The maximum value of the transverse com-
ponent of the wave vector is k⊥,max = 2πLmax/(Dλ), where
Lmax = 750m is the maximum baseline distance in the an-
tenna array, the minimum line-of-sight wavenumber is set
by the bandpass kmin = 2π/∆D ; the observed wavelength
is λ = 0.21m × (1 + z); Ae is the effective collecting area of
each antenna. We use Ae ∼ Ndipλ/4 (Bowman et al. (2006)),
where Ndip = 16 is the number of dipole.

The error on the galaxy power spectrum is expressed in
equation (20). The galaxy shot-noise is dependent on ngal,
the number density of galaxies observable, k‖ = µk, and
σ2
χ = cσz/H(z) denotes the galaxy redshift error in h−1Mpc

units. In most examples we use σz = 0.01, which is the
value used in Lidz et al. (2009b). We discuss the relation
between the redshift error and the error of cross-correlation
coefficient in § 5.2

From equations (18- 23), we compute the errors of the
power spectra averaged over a spherical shell of the logarith-
mic width ε = dlnk for individual k-modes. For example, the
error of the cross-power spectrum is given by
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Figure 9. The 21cm power spectrum with estimated error, based
on a 800 deg2 survey area, at z = 7.272. The brown color repre-
sents the power spectrum from our model including supernova
feedback with Vcut = 30km/s. The light grey and dark grey
lines represent power spectrum from the NOSN models with
Vcut = 30km/s and no suppression, respectively.

5.2 Observational uncertainty for future surveys

We consider two different galaxy densities for surveys in
combination with the MWA. Following Lidz et al. (2009a)
we consider galaxy abundance values which correspond to a
futuristic survey (ngal = 1.6 × 10−2Mpc−3) and a Subaru-
like survey (ngal = 1.6 × 10−4Mpc−3). In our model these
values correspond to galaxies which have, respectively, UV
magnitudes less than −15.3 and −19.4.

Figure 7 shows the predictions of error estimations for
spherical bins of logarithmic width ε = 0.5 at z = 7.272 for
the two different galaxy surveys combined with the MWA.
The cross-correlation coefficient with each galaxy abundance
are represented. Here the cross-correlation assume a galaxy
survey field covering the full MWA. These illustrate that
the cross correlation could be detected at high significance
in either case. We note that the deeper survey does not lead
to grewter accuracy, owing to the lower bias of the fainter
galaxies.

Figure 8 shows results for different feedback models in
each observational examples. Left panels show the results
from a futuristic survey and right panels show a Subaru-like
survey. We also compare the results from different survey
areas, 800 deg2 and 2 deg2. In every case, the results from
our default model with SNe feedback have smaller error bars
than the NOSN models.

To understand this we show in figure 9 the 21cm power
spectrum with estimated error based on equation (19) for
the cases including different feedback processes. The 21cm
power spectra show obvious differences between the models
for supernova feedback for the shape and amplitude of the
power spectrum, especially at large scales. Figure 8 and 9
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• Predictions of cross-correlation coefficient error

Murchison Widefield Array (MWA) specifications

Subaru deep survey properties

system temperature
bandpass
total observing time
antenna array
survey volume
survey areagalaxy number density

redshift error

Lidz et al., 2009, APJ
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Detectability

• Cross-correlation could be detected at high significance.

• Predictions of cross-correlation coefficient error
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Detectability

• Cross-correlation could be detected at high significance.

•S/N
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Effect of feedback process
• Our model (Lagos et al, 2012)

• AGN feedback
• SNe feedback
• Photoionization feedback

• Modified Bow06 model (Bower et al, 2006)

• Modified Bow06 model (Bower et al, 2006)

• AGN feedback
• SNe feedback
• Photoionization feedback

• AGN feedback
• SNe feedback
• Photoionization feedback
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Effect of feedback process
• Our model (Lagos et al, 2012)

• AGN feedback
• SNe feedback
• Photoionization feedback

• Modified Bow06 model (Bower et al, 2006)

• Modified Bow06 model (Bower et al, 2006)

• AGN feedback
• SNe feedback
• Photoionization feedback

• AGN feedback
• SNe feedback
• Photoionization feedback

NOSN

NOSN
NO Suppression
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• The effect of feedback process on cross-power spectra

• Different feedback processes show different turnover scale.

Effect of feedback process
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Effect of feedback process
• The effect of feedback process on 21cm power spectra

• Different feedback processes affect the shape and error of 21cm power 
spectra.
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Effect of feedback process
• The effect of feedback process on the detectability

• Different feedback processes affect the shape and error of cross-
correlation coefficient.
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• We calculated cross-power spectrum, cross-
correlation function, and cross-correlation 
coefficient using Hierarchical galaxy 
formation model.

Summary

• We calculated observational uncertainties of 
cross-correlation based on MWA  
specifications and Subaru-like galaxy survey 
properties.

• We found that feedback processes make 
difference on cross-power spectra and 
estimated error. Thus, detailed modelling is 
required to predict accurate cross-correlation.
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Thank you.
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