THE FORMATION HISTORY MODEL

A SIMPLE MODEL OF GALAXY FORMATION

Simon Mutch¹, Darren Croton², Greg Poole¹ ¹ The University of Melbourne ² Swinburne University of Technology

GALANES

COMPLICATED

2 Mpc/h

The Formation History model

	*****//////////////////////////////////	

0.171 -	************************	- 5.8
0.182 -	+++++++++++++++++++++++++++++++++++++++	- 5.5
0.193 -	***************************************	- 5.1
0.205 -	······································	- 4.8
0.218 - 1	······································	- 4.5
0.232 - 4	······································	-4.3
0.246 -		- 4.0
0.262	•••••••••••••••••••••••••••••••••••••••	7-38
0.278	**** ********************************	-3.5
0.296	······································	3.3
0.314 -	1	- 3.1
0.334 - 美	•••••••••••••••••••••••••••••••••••••••	-29
0.355 -		-2.8
0.377 -		- 2.6
0.401 -		- 2.4
0.426 -	***** *******************************	- 2.3
0.453 -	**************************************	- 2.2
0.482 -		-2.0
0.512 -		- 1.90
0.544 -		- 1.8
0.578 -	······································	- 1.7
0.614	 	- 1.6
0.653 -	·····	- 1.5
- 1493.0	••••••••••••	- 1.4
0.738 -	•••/*/////	- 1.3
0.784 -	• ++++++++	- 1.2
0.833 -	••••	- 1.2
0.885 -	• 1///	- 1.1
0.941 -	•/	- 1.0
1.000	•	1.0
a		Z+

The Formation History model

$\dot{M}_* = F_{\text{growth}} \cdot F_{\text{phys}}$ THE "BARYONIC GROWTH" FUNCTION THE "PHYSICS" FUNCTION

THE baryonic $\dot{M}_* = F_{\text{growth}} \cdot F_{\text{phys}}$

 $\dot{M}_* = F_{\text{growth}} \cdot F_{\text{phys}}$

 $\dot{M}_* = F_{\text{growth}} \cdot F_{\text{phys}}$

THE PHYSICS FUNCTION

SIMON MUTCH Synthetic Universes Workshop - March 2013

PUTTING IT ALL TOGETHER...

$$SFR \equiv \dot{M}_{*} = F_{growth} \cdot F_{phys}$$
$$F_{growth} = f_{b} \frac{dM_{vir}}{dt}$$
$$F_{phys} = \mathcal{E}_{\dot{M}_{vir}} \exp\left(-\left(\frac{\Delta M_{vir}}{\sigma_{M_{vir}}}\right)^{2}\right)$$

SOME BASIC RESULTS...

SOME BASIC RESULTS...

SIMON MUTCH Synthetic Universes Workshop - March 2013

SOME BASIC RESULTS...

SOME BASIC RESULTS...

SOME BASIC RESULTS...

SOME BASIC RESULTS...

EVOLUTION

$$\begin{split} \log_{10}(M_{\text{peak}}(z)) &= \log_{10}(M_{\text{peak}}) \cdot (1+z)^{\alpha_{M_{\text{vir}}}} ,\\ \sigma_{M_{\text{vir}}}(z) &= \sigma_{M_{\text{vir}}} \cdot (1+z)^{\beta_{M_{\text{vir}}}} ,\\ \mathcal{E}_{M_{\text{vir}}}(z) &= \mathcal{E}_{M_{\text{vir}}} \cdot (1+z)^{\gamma_{M_{\text{vir}}}} . \end{split}$$

WHAT ELSE CAN WE DO WITH IT?

- Statistically constrained catalogues
 - Access to full formation histories
- Comparing effects of dark matter treatment on galaxy populations
- Testing general theories e.g. monolithic collapse, ICL, L_{QSO} vs. SFR, etc.

A FORMATION HISTORY MODEL OF Galaxy growth

- physically motivated (halo growth
 stellar mass growth)
- simple $(\dot{M}_* = F_{\text{growth}} \cdot F_{\text{phys}})$
- adaptable
- useful!

(fast + provides stellar mass histories, SFRs, colours, ...)