Semi-analytic modelling of high-redshift Lyman-alpha galaxies

Thibault Garel - Swinburne

J. Blaizot, B. Guiderdoni (Lyon), D. Schaerer, A. Verhamme (Geneva)

SURFS workshop Perth, March 2013

Introduction - Lya emission & transfer

Lya emission from star-forming regions

- Most intense line (up to ~10% Lbol)
- $\mathbf{L}_{\mathrm{Ly}lpha}^{\mathrm{intr}} \propto rac{2}{3} \dot{\mathcal{N}}_{\mathrm{ion}}^{\mathrm{OB}} \propto \mathrm{SFR}$
- Can probe high-z galaxies, especially faint ones undetected in UV-continuum

ISM optically thick for Ly α ($\tau_{HI} > 1$) => resonant scattering

Lyα Ηα

Ostlin+09

Introduction - Lya emission & transfer

Lya emission from star-forming regions

- Most intense line (up to ~10% Lbol)
- $\mathbf{L}_{\mathrm{Ly}lpha}^{\mathrm{intr}} \propto rac{2}{3} \dot{\mathcal{N}}_{\mathrm{ion}}^{\mathrm{OB}} \propto \mathrm{SFR}$
- Can probe high-z galaxies, especially faint ones undetected in UV-continuum

ISM optically thick for Ly α ($\tau_{HI} > 1$) => resonant scattering

<mark>Lyα</mark> Ηα

Ostlin+09

in frequency space

Introduction - Lya emission & transfer

Lya emission from star-forming regions

- Most intense line (up to ~10% Lbol)
- $\mathbf{L}_{\mathrm{Ly}lpha}^{\mathrm{intr}} \propto rac{2}{3} \dot{\mathcal{N}}_{\mathrm{ion}}^{\mathrm{OB}} \propto \mathrm{SFR}$
- Can probe high-z galaxies, especially faint ones undetected in UV-continuum

ISM optically thick for Ly α ($\tau_{HI} > 1$) => resonant scattering

<mark>Lyα</mark> Ηα

Ostlin+09

in frequency space

Tapken+07

Introduction - Observational context

Lya Emitters (LAEs)

- photometric selection (narrow-band) (e.g. Gronwall+07, Ouchi+08)
- blind spectroscopic surveys (Blanc+11, Cassata+11)

Lyman-break galaxies (LBGs)

- Broad-band selection (=> UV-bright) (e.g. Steidel+99, Bouwens+07)
- ~ 50% of z=3 LBG show Ly α in emission (Shapley+03)

LAEs on average less massive, bluer, less dusty and younger than LBGs

... but red, massive LAEs also found (Finkelstein+09)

M_{UV} [mag]

Introduction - Observational context

How do outflows affect Lyα profiles? (Kunth+98, Shapley+03, McLinden+10, Steidel+10)

Fits of high-z Lyα profiles with shell model (Verhamme+08)

Introduction - Motivations

- Nature of Lyα emitters (LAE) / overlap with LBGs
- Hierarchical evolution of LAEs (progenitors of local spirals?)
- Ly α as a probe of reionization ? (transition in terms of Ly α emission at z ~ 6-7 ?)

This talk: Test shell model in cosmological context (post-reionization epoch) Mathematical context (post-reionization epoch) Coupling of SAM with Lyα transfer "shell model" Garel+12, MNRAS ; Garel+13, in prep.

Semi-analytic model - GALICS (Hatton+03)

Cosmological simulation

- L_{box} = 100 h⁻¹ Mpc
- 1024³ DM particles
- M_{res} = 1.9 x 10⁹ M_☉
- WMAP-5 cosmology

Find DM halos (FOF)

Build merger trees (Tweed+09)

Semi-analytic model - GALICS

Cosmological simulation

Original model (Garel+12):

- N-body simulation: WMAP-3 parameters
- cannot match UV/Lyα LF at z > 5

New model (Garel+13, in prep.):

- WMAP-5 cosmology
- Faster structure growth at high z

Semi-analytic model - GALICS

Time resolution

Simulation outputs regularly spaced

• da = 0.01 Timestep > t_{dyn} at (very) high z

Simulation outputs irregularly spaced

• $dt(z) = t_{dyn}(z)$

Semi-analytic model - GALICS

Modelling of galaxies

Original SAM (Hatton+03)

- standard prescriptions for galaxy evolution
- coupling with stellar synthesis models (Stardust, Devriendt+99)

Updates (Garel+12)

- Cold accretion (streams) replaces cooling
- Migration of clumps to "starburst region"
- Kennicutt law (efficiency x 5)
- strong SN feedback

Semi-analytic model - Lya transfer

• Shell parameters

X expansion velocity V_{exp} ~ SFR^{1/6} (Bertone+05)

X HI column density $N_{HI} = f_{shell} M_{HI} / (4\pi R^2)$

X dust opacity $T_{dust} \sim (Z / Z_{\odot})^{1.6} N_{HI} (1+z)^{1/2}$ (Guiderdoni+87)dust-to-gas ratio evolution (Reddy+06)

X velocity dispersion b = 20 km.s⁻¹ (T = 10⁴ K)

• Library of ~ 6000 Lyα transfer models in shells (Schaerer+11)

Lyα profile and Lyα photons escape fraction fesc

UV luminosity functions

Lyα escape fraction

fesc distribution vs SFR

• low-SFR (Mstar) galaxies

f_{esc} ~ 1

SFR ~ $L_{Ly\alpha}$ / (10⁴² erg.s⁻¹)

high-SFR (M_{star}) galaxies
 ~ uniform (log) f_{esc} distribution
 Lyα can't be used to trace SFR

Stellar Masses

$M_{star} per L_{Ly\alpha} bin$

- "Typical" LAEs have median $M_{star} \sim 10^9 M_{\odot}$ but cover wide mass range
- Brightest LAEs are not most massive galaxies
- Massive objects (~ LBGs) can have various Lyα intensities

Fraction of line emitters in LBG samples

X_{LAE} vs M₁₅₀₀ in (faint) LBGs with Keck spectroscopy (EW_{Lyα} >≈ 50 A)

Lya properties per bin of UV mag (~SFR) quite well reproduced

Lightcones

• Draw lightcones through the boxes (MOMAF, Blaizot+06)

Apply transformation to the box to avoid replication effects

Lightcones

• Draw lightcones through the boxes (MOMAF, Blaizot+06)

Apply transformation to the box to avoid replication effects

Mock fields - Examples

- Mock field of LAEs
- FoV : 100 arcsec²
- $F_{Ly\alpha} > 5.10^{-19} \text{ erg.s}^{-1}.\text{cm}^{-2}$
- 3 < z < 6

Mock fields - Examples

- field of 100 arcmin²
- F_{Lyα} > 5.10⁻¹⁹ erg.s⁻¹.cm⁻²
- 3 < z < 3.1

DM halos

LAEs

Mock fields - Examples

- field of 100 arcmin²
- $F_{Ly\alpha} > 5.10^{-19} \text{ erg.s}^{-1}.\text{cm}^{-2}$
- 5.5 < z < 6

DM halos

LAEs

Clustering - Angular correlation function $w(\theta)$

Are LAEs in the right halos?

• ACF measured in Wide-field narrow-band surveys

- Samples contaminated by low-z interlopers
- Contamination rate ~ 20-30% (Ouchi+08, Hu+10)

Add random sources in mocks to mimic interlopers:

0	%	of	interlopers
10	%		
20	%		
30	%		
40	%		

Conclusions

• Simple model for Lyα emission/transfer able to reproduce many obs. data (e.g. LAE / LBG connection)

But : - inhomogenous data (esp. LFs) makes things easier
 - some mismatchs (e.g. EW_{Lyα} distribution)

• Look at hierarchical evolution of high-z LAEs (MW halos at z=0?)

• Do we need to invoke x_{HI} evolution to explain z > 6.5 Ly α data ?