

HI gas measurements of field galaxies at z~0.1 & 0.2 using HI spectral stacking technique

Jonghwan Rhee (RSAA, ANU & CAASTRO)

Martin A. Zwaan, Frank H. Briggs, Jayaram N. Chengalur, Philip Lah, Tom Oosterloo, and Thijs van der Hulst

OUTLINE

- Why care about HI?
- HI spectral Stacking technique
- Measuring HI gas content at z~0.1 and 0.2
- Cosmic HI gas evolution

HI gas in the Universe

- Tentative reservoir of star formation fuel
- Structure & Kinematics of galaxies
- Tracer of Dark matter potential
- Characterize EoR / Dark age

HI gas in higher redshift

- Knowledge of HI gas is limited to nearby universe
- Different technique adopted at z > 2.0 (DLA)
- At intermediate redshift 0.2 < z < 2.0, DLA can be observed only from space.

Why Hard to Detect HI 21cm line z > 0.1

6th PHISCC workshop

HI detection beyond z~0.1

Spectral Signal Stacking

CNOC2 0920+37 Field

- One of the fields taken by the Second Canadian Network for Observational Cosmology (CNOC2) Field Galaxy Redshifts Survey.
- Positions, redshifts, UBVRI photometry for 1630 galaxies.
- Only 155 galaxies lie within the WSRT frequency and beam coverage(1 deg).

 Among a total of 155 galaxies, 59 galaxies at z~0.1, 96 galaxies at z~0.2

6th PHISCC workshop

WSRT observation

- 12 hr x 10 days in 2003
- A total of on-source integration time of ~106 hr
- Observation Frequency
 - 1160 ~ 1321 MHz (0.075 < z <0.224)
 - 8 x 20 MHz BW / 128 channels per band
 - 156.25 kHz (37.9 km/s) channel width
- AIPS and CASA used for data reduction

(flagging, calibration, self-calibration, peeling, imaging)

Continuum map at z~0.1

Line data cube of a sub-band

6th PHISCC workshop

Direct Detection

- Implementing a source finding software,
 DUCHAMP, with data cubes.
- Cross-checking CNOC2 catalogue and optical images from SDSS
- 11 objects found at z~0.1,
 2 objects found at z~0.2

Galaxy HI-optical size

- WSRT synthesized beam
 ~33 arcsec x 20 arcsec
- (~50 kpc x 31 kpc @ z~0.1)
- Used relation between HI size and optical size (SDSS petrosian radius) from Broeils & Rhee (1997)

HI stacking

6th PHISCC workshop

$\Omega_{\rm HI} =$	$rac{ ho_{ m HI}}{ ho_{ m crit}},$	$ ho_{ m crit}$	=	$\frac{3H_0}{8\pi G}$
	•			

	z ~ 0.1			z ~ 0.2						
Sample	Ngal	$\langle M_{HI} \rangle$	<lb></lb>	ρ _{L B}	$\rho_{\rm HI}$	Ngal	$\langle M_{HI} \rangle$	(LB)	ρ _{L B}	ρ _{ΗI}
Early	8	1.18 ± 0.39	7.85	6.45 ± 1.12	0.79 ± 0.30	25	0.13 ± 0.46	16.35	6.48 ± 1.35	0.05 ± 0.18
Intermediate	17	3.11 ± 0.45	14.13	4.42 ± 0.88	1.03 ± 0.25	25	1.94 ± 0.52	13.29	4.93 ± 1.26	0.71 ± 0.26
Late	34	1.43 ± 0.20	4.41	6.09 ± 1.19	2.61 ± 0.63	46	2.61 ± 0.35	9.15	7.90 ± 2.18	3.81 ± 1.16
All		$\Omega_{\rm HI}(z$	~ 0.1) =	$(0.33 \pm 0.05) \times$: 10 ⁻³		$\Omega_{\rm HI}(z)$	~ 0.2) =	(0.34 ± 0.09)) >	× 10 ^{− 3}

6th PHISCC workshop

Cosmic HI mass density (Ω_{HI})

6th PHISCC workshop

Conclusion

- The global HI abundance does not change significantly over last 2 Gyr (to z~0.2)
- Stacking technique works well at higher redshift
- HI spectral stacking is very useful for future HI surveys

Thank you

6th PHISCC workshop

HI mass-to-light ratio $(M_{\rm HI}/L_B)$

	$z\sim 0.1$	$z\sim 0.2$
Sample	$\langle M_{ m H{\scriptscriptstyle I}} angle / \langle L_B angle$	$\langle M_{ m H{\scriptscriptstyle I}} angle / \langle L_B angle$
Early	0.15 ± 0.05	0.01 ± 0.03
Intermediate	0.22 ± 0.03	0.15 ± 0.04
Late	0.32 ± 0.04	0.29 ± 0.04