Physical Properties of Spectroscopically Confirmed Galaxies at Redshift ≥ 6

Linhua Jiang

(Arizona State University)

2013 CAASTRO Reionization in the Red Centre Collaborators: F. Bian, S. Cohen, R. Dave, E. Egami, X. Fan, K. Finlator, N. Kashikawa, M. Mechtley, M. Ouchi, K. Shimasaku, and R. Windhorst

Outline

- Introduction
- A sample of 67 spectroscopically-confirmed galaxies at $z \ge 6$
- Rest-frame UV continuum slope
- Rest-frame UV continuum morphology
- Merging/interacting systems
- Lyα morphology of LAEs
- Positional differences between UV continuum and Lyα emission
- Lya luminosity functions from z = 5.7 to 7.7
- Rest-frame Lyα luminosity and EWs
- UV luminosity function of LAEs
- SED modeling and stellar populations
- LAE vs. LBGs

.

Nonparametric measurements of morphology (CAS+GM₂₀)

Cosmic reionization and high-z galaxies

Cosmic reionization

- Neutral IGM ionized by the first astrophysical objects at 6 < z < 15
- Evidence: CMB polarization + GP troughs in quasars + ...
- Responsible sources for Reionization

> High-z galaxies ($z \ge 6$)

- HST + the largest ground-based telescopes
- A few hundred galaxies or candidates at z ≥ 6; many at z ≥ 8 (e.g.; Bouwens 2011; Oesch 2012; Ellis 2013; and many more papers)

Current studies

- Mostly done with photometrically-selected LBGs with decent IR data (e.g., several HST ultra/deep fields)
- Lack of a large spectroscopically-confirmed sample with deep IR data (HST + Spitzer)

A study of spectroscopically-confirmed galaxies at $z \ge 6$

A simple idea

- HST and Spitzer imaging of spectroscopically-confirmed galaxies in the Subara Deep Field (SDF) and SXDS.
- Three HST programs and two Spitzer programs

Our imaging data

- Optical data from Subaru Suprime-Cam (PSF ≈ 0.6-0.7")
- Broad-band data (AB mag at 3σ): BVRi ≈ 28.5, z ≈ 27.5, y ≈ 26.5
- Narrow-band data (26 mag): NB816 and NB921, NB973 (25 mag)
- HST near-IR data (~2 orbits per band): WFC3 F125W (or F110W) and F160W
- Spitzer mid-IR data (3 ~ 7 hrs): IRAC 1 and 2

Our galaxy sample

- A total of 67 galaxies: 22 LAEs at z ≈ 5.7; 16 LBGs at z ≈ 6; 28 LAEs at z ≈ 6.5; 1 LAE at z ≈ 7
- A complementary sample to LBGs discovered by HST

Note:
LAEs: found by the narrow-band (NB) technique
LBGs: found by the dropout technique

Rest-frame UV continuum slope

- > UV continuum slope β ($f_{\lambda} \sim \lambda^{\beta}$)
- $-1.5 \le \beta \le -3.5$; median $\beta \approx -2.3$
- Slightly steeper than LBGs in previous studies ($\beta \approx -2 \sim -2.1$)
- The βM_{1500} relation is weak at the bright end
- LAEs do not have steeper β than LBGs

(Jiang et al. 2013a, ApJ)

Extremely blue galaxies

- Statistically significant excess of galaxies with $\beta \sim -3$
- Nearly zero dust and metallicity + extremely young + ...
- Current simulations cannot produce $\beta \le -3$ (Finlator 2011)
- How to: top-heavy IMF, high escape fraction, etc. (e.g. Bouwens 2010)

(Jiang et al. 2013a, ApJ)

Morphology

- > Galaxies at $z \ge 6$ are faint and small
 - At higher redshift: size evolution, (1+z)⁴ surface brightness dimming
 - At higher redshift: less well developed, more peculiar
 - Galaxies at $z \ge 6$: occupy several pixels even in HST images

Galaxy size

Half-light radius r_{hl}

- For galaxies at M₁₅₀₀ < −19.5 mag
- Measured r_{hl} ≈ 0.1"–0.3"
- Intrinsic r_{hl,in} ≈ 0.05"–0.3" (0.3–1.7 kpc)
- Small and compact

Size-luminosity relation

Brighter galaxies tend to be larger
r_{hl.in} ~ L^{0.14}; very weak at the bright end

Comparison with previous work

- Similar to photometrically-selected LBGs
- In particular, LAEs are not smaller

(Jiang et al. 2013b, ApJ)

Interacting/merging systems

Merging galaxies

- Visual identification at $M_{1500} < -20.5$ mag
- \geq 2 distinct cores, extended, or long tails

Fraction of mergers

- 38% 50% at M_{1500} < –20.5 mag
- 39% 56% at $M_{1500} < -21$ mag

J₁₁₀

J₁₂₅

Galaxy

Model

z=6.96 LAE

(lye 2006)

Lya morphology in LAEs

- Diffuse Lyα halos
- Based on ground-based NB (Ly α) images
- At low redshift: controversial
- At high redshift: predicted by simulations

2 < z < 3(Steidel 2011)

z = 3.1 LAEs(Matsuda 2012)

z = 3.1 LAEs(Feldmeier 2013)

z = 5.7 LAEs(Zheng 2011)

- > No Ly α halos found at z=5.7 and 6.5
- Stack 43 LAEs at z=5.7 and 40 LAEs at z=6.5
- Stacked images: resolved but not very extended
- Possible reasons: dust, halo distribution, or no halos, etc.

(Jiang et al. 2013b, ApJ)

$Ly\alpha$ -continuum misalignment in LAEs

\succ Ly α and continuum emission

- Originated from the same SF regions
- Lyα affected by resonant scattering

Data

- UV continuum: HST near-IR images
- Lyα: Subaru narrow-band images

Results

- Compact LAEs: no offsets
- Interacting systems: a variety of positional differences
- Disturbed ISM distribution
- Consequence for spectroscopy

(Jiang et al. 2013b, ApJ)

Deep spectroscopy of a z=7.7 LAE candidate

Observations

- Target: brightest z=7.7 LAE candidate from Krug et al. (2012)
- Instrument: LUCI on the 2×8.4m LBT; t_{int} = 7.5 hrs, with good conditions
- Results: non-detection \rightarrow not a LAE at z=7.7

➢ Observed Lyα LF at z ≥ 5.7

- Rapid evolution from z = 5.7 to 6.5 based on a large sample of LAEs
- A z=7 LAE and a z=7.2 LAE suggest such a trend towards higher redshift
- The upper limit at z=7.7 is >5 times lower than the z=6.5 LF
- Explanations:
 - Not likely by intrinsic evolution
 - Likely by neutral IGM
 - Lyα reduced by a factor of two

Note: details in Bian's talk after lunch

(Jiang, Bian, et al. 2013c, ApJ)

Summary

- A systematic study of spectroscopically-confirmed galaxies at $z \ge 6$
- Steep UV continuum slopes
- Galaxy size: mostly small and compact
- Large fraction of merging galaxies in the bright end
- No diffuse Lyα halos were found around LAEs
- Significant positional differences between Lyα and UV continuum
- Rapid evolution of Lyα LF from z=5.7 to 6.5 caused by the IGM