Reionization with the Murchison Widefield Array (MWA)

Judd D. Bowman Arizona State University MWA Project Scientist

MWA Team

Partner Institutions

Australia National University Commonwealth Scientific Industrial Research Organization (CSIRO) Curtin University of Technology Harvard University / Smithsonian Center for Astrophysics Massachusetts Institute of Technology / Haystack Observatory Massachusetts Institute of Technology / Kavli Institute Melbourne University Raman Research Institute Swinburne University of Technology University of Sydney University of Tasmania University of Western Australia Victoria University of Wellington

Commissioning Team

Martin Bell (Sydney) Gianni Bernardi (SKASA) Ramesh Bhat (Curtin) Frank Briggs (ANU) Avinash Deshpande (RRI) Aaron Ewall-Wice (MIT) Lu Feng (MIT) Bryna Hazelton (UW) Natasha Hurley-Walker (Curtin) Danny Jacobs (ASU) Nadia Kudryavtseva (Curtin) Emil Lenc (Sydney) Ben McKinley (ANU) Daniel Mitchell (Univ. Melbourne) Divya Oberoi (NCRA) Steve Ord (Curtin)P ietro Procopio (Univ. Melbourne) Jennifer Riding (Univ. Melbourne) Randall Wayth (Curtin)

And many more team members!

N. Hurley-Walker (Curtin)

MWA Timeline

- 2006-2008:
- 2008-2011:
- 2012 August:
- 2012 December:
- 2013 July 9:
- 2013-2015:

Project initiation, design, and development
Operation of 32T prototype system
Science commissioning commenced
Practical completion of telescope
Operational launch (last week!)
Minimum planned operation

MWA System Parameters

Table 1. System Parameters for the MWA

Parameter	Symbol	150 MHz	200 MHz
Number of tiles	Ν	128	128
Area of one tile at zenith (m^2)	$A_{ m eff}$	21.5	19.8
Total collecting area (m ²)	cn	2 752	2 534
Receiver temperature (K)	T_{rev}	50	25
Typical sky temperature ^a (K)	$T_{\rm sky}$	350	170
Field of view ^{b} (deg ²)	$\Omega_{\rm p}$	610	375
Instantaneous bandwidth (MHz)	B	30.72	30.72
Spectral resolution (MHz)		0.04	0.04
Temporal resolution		0.5 s uncalibrated	0.5 s uncalibrated
		8 s calibrated	8 s calibrated
Polarisation		Full Stokes	Full Stokes
Minimum baseline (m)		7.7	7.7
Maximum baseline (m)		2 864	2 864
Angular resolution (1.5-km array)		\sim 3 arcmin	$\sim 2 \operatorname{arcmin}$
Angular resolution (3-km array)		$\sim 2 \operatorname{arcmin}$	$\sim 1 \text{ arcmin}$

^a Nijboer, Pandey-Pommier, & de Bruyn (2009).

^bBased on the FWHM of the primary beam. Imageable area is significantly larger.

- SEFD = ~20 kJy at 200 MHz at high Galactic latitude
- Bandpass is 80 to 300 MHz (corresponding to 15>z>4)

Tingay et al. 2013

MWA - an imaging array: array layout

Core: ~50 tiles distributed uniformly within a 100 meter radius core

 High surface brightness sensitivity on ~1 degree scales

Mid-array: additional ~60 tiles distributed out to 750 meters

Excellent PSF

Outliers: 16 tiles at a radius of ~1.5 km

~1 arcmin resolution

Tingay et al. 2013

MWA - an imaging array: UV coverage

Beardsley et al. 2013

Beam pattern (FOV)

Abraham Neben (MIT) Daniel Mitchell (Melbourne)

Tingay et al. 2013

0.003 0.0069 0.015 0.031

0.062

0.12 0.25 0.5

0.00099

Early examples of imaging and

source detection

Single night zenith drift scan

SNR

Dirty XX image

Input diffuse model Stokes I

Diffuse model with XX HMF applied

Dirty XX image

Restored XX image No subtraction of diffuse model

≥

≥

0.56

-0.56

-1.67

-2.78

-3.89

-5.00

5.00

3.89

2.78

1.67

Ž

Y

Sources

- Zenith and -45 Dec drift
- Commissioning using only 25% of array ("gamma array")
- 30,000+ sources
- MRC source overlays

J. Morgan (Curtin)

Polarized Sources

Estimate ~1 polarized source/deg²

- Extrapolated from higher frequencies, previous surveys
- Many will be faint ~mJy
- 6 sources detected during commissioning:

Source name	Туре	Polarised Flux	RM	RM (literature)
		$(mJy beam^{-1} RMSF^{-1})$	$(rad m^{-2})$	$(rad m^{-2})$
PMN J0351-2744	AGN Hot spot	303	+32.1	+34.7 ^a
PSR J0437-4715	Pulsar	239	+0.0	+0.0 ^b
PSR J0628-285	Pulsar	180	+45.6	+46.5 b
PMN J0636-2041	AGN Hot spot	921	+49.1	+47.1 ^a
PSR J0742-2822	Pulsar	235	+149.3	+149.95 ^b
PSR J0835-4510	Pulsar	642	+35.6	+31.38 ^b

- **RM resolution = 0.3 rad/m²** for synthesis across full MWA band, better with centroiding
- RM maximum = 1300 rad/m² for 40 kHz spectral resolution
- Instrumental polarization leakage better than <1%, and only ~0.1% near calibrators

FIG. 7.— The Faraday depth spectrum of PMN J0351-2744 at 188 MHz. The spectrum peaks at RM = $+33.85\pm0.07$ rad m^{-2}

Emil Lenc (Sydney) / Bernardi et al. 2013

Polarized Diffuse Emission

K RMSF⁻¹. **15 arcmin resolution. 2400 sq. degrees.** P = 13 K

Bernardi et al. 2013

Joint widefield imaging and calibration in real-time (RTS)

Full peeling of MRC sources with J-matrix fits

N_a = 99 tiles Subtract 500 sources Calibrate on N_{cal} sources

~N_{pol}N_a(N_a-1)/2 vis ~N_{pol}N_a unknowns

Want N_{cal} < ~N_a/2 so able to solving independently for ~50 calibrators in this observation

Daniel Mitchell (Melbourne)

Upcoming Observations

photo: John Goldsmith

750 hours of observations planned in 2013B (started this month):

- ~400 hours for redshifted 21 cm, concentrating on 6<z<9
- ~150 hours for all-sky survey
- Plus additional science and instrument development time

Expect roughly equivalent observing time in 2014A

MWA EoR Observations

Observational properties of the 21 cm signal in Fourier domain

- There is an EoR window where the signal should dominate
- Can use understanding to identify errors below the imaging limit

Datta et al. (2010) Liu & Tegmark (2011) Morales et al. (2012) Vendatham et al. (2012) Trott et al. (2012) Parsons et al. (2012) Hazelton et al. (2013) Thyagarajan et al. (submitted)

MWA 21 cm sensitivity (theoretical)

SNR < 1 / pixel (but 10⁸ pixels) Total power spectrum SNR = 14

Beardsley et al. 2013

MWA 21 cm sensitivity vs. reionization

Bowman, et al. (2013) Simulated 21 cm signal from Lidz et al. (2008)

MWA proof-of-concept results (1)

• No foreground subtraction

Dillon, Liu et al. (submitted)

MWA proof-of-concept results (2)

- Power spectrum upper limits
- MWA 32T prototype with only ~22 hours

Dillon, Liu et al. (submitted)

Summary

- MWA is operational and performing well (and improving), encouraging for delivering first EoR results over the next couple years.
- Science capabilities enable full Stokes, high survey efficiency, surface brightness sensitivity, sampling of many timescales, high-dynamic range imaging from 1 arcmin to 15 degrees
- More information:
 - System overview (Tingay et al. 2013)
 - Science drivers (Bowman et al. 2013)
 - <u>http://mwatelescope.org</u>
- 21 cm data to be released to community 18 months after completion of observing season (including reduced data products). Archived at MIT and Melbourne Uni.
- Accepting open access observation proposals in Sept/Oct. 2013.