

Understanding Galaxies and Reionization Together

http://arxiv.org/abs/1305.4768

Kristian Finlator, DARK Cosmology Centre

S. Peng Oh, UCSB Romeel Davé, The University of Arizona; University of the Western Cape; South African Astronomical Observatories; African Institute for Mathematical Sciences Feryal Özel, The University of Arizona Benjamin D. Oppenheimer, Leiden University; CASA Joseph A. Muñoz, UCLA

Observational Constraints on Hydrogen Reionization

Emissivity $T_{Ly\alpha}$; UV luminosity function; absorber abundance; GRB rate; IR background fluctuations; X-ray background

Opacity LAEs (clustering, line profile, luminosity function); QSO damping wing; 21 cm fluctuations

History T_{CMB}; IGM temperature; Kinetic S-Z effect Observational Constraints on Hydrogen Reionization ...that are invoked in models

Emissivity

T_{Lyα}; UV luminosity function; absorber abundance; GRB rate; IR background fluctuations; X-ray background

Opacity LAEs (clustering, line profile, luminosity function); QSO damping wing; 21 cm fluctuations

History TCMB; IGM temperature; Kinetic S-Z effect Observational Constraints on Hydrogen Reionization ...that are invoked in models

Emissivity

TLyα; UV luminosity function; absorber abundance; GRB
In order to interpret more observations,
a model must include more physics.

(see also talks by A. Pawlik, H. Kim; poster by K. Hasegawa) damping wing; zicm nuctuations

History TCMB; IGM temperature; Kinetic S-Z effect

 $z = 20 \rightarrow 8.5$

Record=1.00

9 h⁻¹ Mpc

Ingredients

• GADGET-2 + on-the-fly ionizing radiation transport (KF+2011b)

nonequilibrium ionization (processes/rates from Katz, Weinberg, & Hernquist 1996)

• outflow, star formation models have been tested extensively against UV LF, IGM metal absorbers, galaxy metallicities (Davé+; Oppenheimer+; KF+; Ford+)

Modeling the UV LF

Predicted LF Evolution is Reasonable

See also: Schenker+2013; Ellis+2013; Bouwens+

Predicted LF Evolution is Reasonable

Thursday, July 18, 13

Outflows versus Photoionization Heating

credit: Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA

credit: NASA/NSSDC

• without any feedback, the LF is overproduced

without any feedback, the LF is overproduced
an EUVB reduces galaxy abundance by < 50%

without any feedback, the LF is overproduced
an EUVB reduces galaxy abundance by < 50%
momentum-driven outflows (Murray+2005) suppress LF effectively

 without any feedback, the LF is overproduced an EUVB reduces galaxy abundance by < 50% momentum-driven outflows (Murray+2005) suppress LF effectively • given outflows, the impact of an EUVB to $M_{UV} < -16$ is weak

> see also: Davé, KF, & Oppenheimer 2006; KF+2006;

KF, Davé, & Özel 2011

WST 5σ limit

KF, Davé, & Özel 2011

the LF is overproduced an EUVB reduces galaxy abundance by < 50% momentum-driven outflows (Murray+2005) suppress LF effectively

• given outflows, the impact of an EUVB to $M_{UV} < -16$ is weak

> see also: Davé, KF, & Oppenheimer 2006; KF+2006;

Takeaways: UV LF

- If $M_{wind}/M_* \propto M_h^{-1}$ (momentum-conserving outflows), then outflows dominate feedback for all $M_h > 10^9 M_0, z \ge 6$
- If SN feedback is energy-driven, then outflows dominate wherever AGN don't (Wyithe & Loeb 2012; Kim+2013)

Modeling $T_{Ly\alpha}$ and T_{CMB}

For fixed f_{esc} , TCMB and $T_{Ly\alpha}$ in tension

KF, Davé, & Özel 2011

For fixed f_{esc} , TCMB and $T_{Ly\alpha}$ in tension

KF, Oh, Özel, & Davé 2011

Thursday, July 18, 13

Evolving f_{esc}(z) Performs Better

Kuhlen & Faucher-Giguere 2012;

Inoue+2006;

Becker 2012

Mitra+2011, 2012;

Ferrara & Loeb 2012;

Haardt & Madau 2012;

Alvarez, KF, & Trenti 2012;

Raskutti, Bolton, Wyithe, &

Evolving f_{esc}(z) Performs Better

12

KF, Oh, Özel, & Davé 2011

Takeaways: $T_{Ly\alpha}$ and T_{CMB}

(1) Matching $T_{Ly\alpha}$ and T_{CMB} simultaneously within a galaxy-driven reionization scenario requires either a strongly evolving $f_{esc}(z)$ or self-regulation (Alvarez, KF, & Trenti 2012).

(2) Outflows are in tension with selfregulated scenarios (Wyithe & Loeb 2012; Kim+2013)

Modeling TIGM

Testing Models Using TIGM at z = 6

Comparing the temperature log(T/K) of gas at the mean density at z=6:

Simulation:3.8 - 4.2Bolton+2012:3.68 - 3.98

 \Rightarrow excellent agreement suggests that the reionization history is realistic.

Takeaway: TIGM

Models that reproduce T_{CMB} can also reproduce T_{IGM} if the UVB reflects a Population II spectrum. (see also Raskutti, Bolton, Wyithe, & Becker 2012)

Modeling Ol Absorbers

Motivation: Searching for Low-absorber at z = 6.0097Mass Galaxies

Observations (Becker+06,11,13)
selected as absorbers along sightlines to high-z quasars;
HI is saturated;
number density comparable to DLAs/sub-DLAs at z = 3;
column density ratios same as DLAs at z~3

How Does OI Relate to Neutral Gas?

100 pkpc

KF+2013, submitted

Thursday, July 18, 13

How Does OI Relate to Neutral Gas?

Reionization Suppresses the Cross-Section for Low-Ionization Metal Absorption

The fraction of the virial cross section that is visible in absorption declines
The minimum mass for appearing as an absorber grows (similar to the filtering mass)

Reionization Suppresses the Cross-Section for Low-Ionization Metal Absorption

Characteristic host halo mass grows
M_h < 10^{9.5} M₀ for z ≥ 6
This is 10-100× less massive than host halos of LBGs/LAEs (e.g., Muñoz & Loeb 2011; Ouchi+2010)! How does the Ol absorber abundance evolve?

• The growth of new galaxies should drive the abundance of absorbers up. Meanwhile,

• The encroachment of ionization fronts as reionization proceeds (the background amplifies and the virial overdensity declines) should drive the abundance of absorbers *down*.

How does the overall abundance evolve?

Reionization Leads to Slow Evolution in the Abundance of Low-Ionization Metal Absorbers

KF+2013, submitted; observations from Becker+2011

 Predicted abundance in marginal agreement with observations (given the uncertainties!)

Thursday, July 18, 13

Reionization Leads to Slow Evolution in the Abundance of Low-Ionization Metal Absorbers

 Predicted abundance in marginal agreement with observations (given the uncertainties!)

Ol Absorbers are sub-DLAs & DLAs

Thursday, July 18, 13

Is the z=7 Universe Partially Neutral?

Is the z=7 Universe Partially Neutral?

Thursday, July 18, 13

Is the z=7 Universe Partially Neutral?

Constraints by Simcoe+2012. The absorber in the foreground of ULASJ1120+0641 is inconsistent with arising in halo gas.

Takeaways: Ol Absorbers

 Simulations reproduce the observed absorber abundance;

- Host halos have a characteristic mass of $M_h < 10^9 M_0$; central galaxies have $M_{UV} > -15$ at z > 6
 - → Absorbers are potentially a powerful test of models that suppress star formation at these scales (Bouché +2010; Krumholz & Dekel 2012; Kuhlen+2012, 2013)
- $N_{HI} = 10^{19} \cdot 10^{21} \text{ cm}^{-2}$

• The Simcoe+2012 metal absorber constraints on ULASJ1120+0641 (Mortlock+2011) are inconsistent with arising in halo gas; imply x_{HI} > 10% (Bolton+ 2011; Schroeder, Mesinger, & Haiman 2012) Observational Constraints on Hydrogen Reionization ...that have been invoked in models

Emissivity

T_{Lyα}; UV luminosity function; absorber abundance; GRB rate; IR background fluctuations; X-ray background

Opacity LAEs (clustering, line profile, luminosity function); QSO damping wing; 21 cm fluctuations

History TCMB; IGM temperature; Kinetic S-Z effect Observational Constraints on Hydrogen Reionization ...that have now tested models

Emissivity

T_{Lyα}; UV luminosity function; absorber abundance; GRB rate; IR background fluctuations; X-ray background

Opacity LAEs (clustering, line profile, luminosity function); QSO damping wing; 21 cm fluctuations

History T_{CMB}; IGM temperature; Kinetic S-Z effect

Questions for Discussion

• The UV LF requires outflows. Outflows rule out self-regulation. Models without self-regulation cannot simultaneously match $T_{Ly\alpha}$ at z = 5-6 and T_{CMB} . Is there an astrophysical solution such as $f_{esc}(z)$ or should we just hope that Planck will bring down T_{CMB} ?

Questions for Discussion

• The UV LF requires outflows. Outflows rule out self-regulation. Models without self-regulation cannot simultaneously match $T_{Ly\alpha}$ at z = 5-6 and T_{CMB} . Is there an astrophysical solution such as $f_{esc}(z)$ or should we just hope that Planck will bring down T_{CMB} ? • How can we invoke other observations to constrain galaxy formation at $z \ge 6$?

Questions for Discussion

• The UV LF requires outflows. Outflows rule out self-regulation. Models without self-regulation cannot simultaneously match $T_{Ly\alpha}$ at z = 5-6 and T_{CMB} . Is there an astrophysical solution such as $f_{esc}(z)$ or should we just hope that Planck will bring down T_{CMB} ? • How can we invoke other observations to constrain galaxy formation at $z \ge 6$?

• Is there a connection between absorption-selected systems at $z \ge 6$ and the satellites of the Milky Way?

(end of presentation)