Impact of the First Stars on Cosmic Reionization and Probing Their Existence through Planck

Kyungjin Ahn

Chosun University / UC San Diego - visiting Reionization in the Red Centre, Uluru Australia Jul 2013

Collaborators: Paul Shapiro, Texas Ilian Iliev, Sussex Garrelt Mellema, Stockholm Yi Mao, IAP Dongsu Ryu, Korea Hyunbae Park, Texas Mike Norman+, UCSD and others

Observational constraints

Current observational constraints on Reionization

- When reionization completed (from high- z QSO spectra)
 - GP effect: $z_{ov} \sim 6.5$??? (only lower limit to neutral fraction at z>6.5)
 - z=7 objects: QSO (Mortlock+ 2011), LAE in LBGs (Pentericci+ 2011), LAEs(Ota+ 2010) → all indicating neutral fraction > 10% at z=7 !!!!!

when reionization completed: z~6 QSO spectra (Fan+ 2006)

_ ک

when reionization completed: z=7.085 QSO (Mortlock+ 2011)

very small proximity zone \rightarrow high neutral fraction of >~ 0.1 at z=7 (Bolton+ 2011)

$$FLy\alpha = \frac{\# \text{ of } Lyd - emitting }{\# \text{ of } LBGs}$$

Decline of FLy α at z \approx 7.

- \rightarrow large HI fraction at z \approx 7
- \rightarrow drastic change in x_e?
 - Pentericci+: ~ 50% per dz~1
 - Bolton+: >~ 10% per dz~1
- \rightarrow reionization ended at z < 7 !!

Current observational constraints on Reionization

- Electron content + bulk movement
 - kinetic Sunyaev- Zeldovich effect on CMB
 - South Pole Telescope: z(x=99%)- z(x=20%) ~ 4.4 - 7.9 (2σ level foreground modeling, Zahn+ 2011; see also Mesinger+ 2012)
- Electron content, in terms of Thomson scattering optical depth of CMB
 - $-\tau = 0.089 \pm 0.014$ (WMAP9, 1 σ level)
 - τ = 0.089 +0.012 0.014 (Planck+WMAP polarization, 1 σ level)

T = $\int_{z_{reionization}}^{z=0} M_e \sigma_{T} dl$

New Developments in First Star Theory

New developments - First star formation

- 1 star / 1 halo paradigm (Abel, Yoshida, Bromm, ...)
 - star ~ 100 M_{\odot}
 - until ~ 5 years ago
- paradigm shift? (e.g. Turk, Abel, O'Shea 2009)
 - 1 binary / 1 halo
 - stars ~ 7 M_☉ + ~ 20 M_☉ → weaker UV output?
 - stellar binary → x- ray binary → x- ray source?
 - caveat: universality unknown

<u>New developments – baryon-DM offset</u>

- baryon moving against dark matter
 - velocity offset @ recombination (Naoz & Barkana 2005)
 - ~ a few km/s velocity offset @
 z~ 20 (Tseliakhovich & Hirata 2010)
- baryon formation offset
 - velocity offset → formation offset (O'Leary & McQuinn 2012)
 - Jeans mass up → suppression of star formation (Greif+ 2011)
 - mechanical heating → 21cm boost (McQuinn & O'Leary 2012)

FIG. 2. Power spectrum of matter distribution in the first order CDM model (solid line) and with the v_{bc} effect included (dashed line) at the redshift of z = 40.

Simulation (w/ first stars)

Numerical Simulations of Reionization

- Process is nonlinear and directional: need simulation
- Status of state- of- art numerical simulation so far
 - Need big box for statistics (H II bubble ~ 20 Mpc)
 - numerical resolution limited
 - Minihalos (<~ $10^8 M_{\odot}$) not resolved
 - <u>Minihalos are the cradle for the first stars</u>!! (Norman, Wise, Yoshida, Bromm, Abel, ...) Most abundant halo type.
- In this talk, Minihalos ~ First Stars

Motivation/Puzzle/Our answer

- Lost photon budget

 first stars in minihalos
- Late reionization(z_{ov}<7) & high τ conditions: hard to match simultaneously w/o first stars
 - hard in numerical simulations (lliev+; Zahn+; Trac & Cen)
 - hard with observed galaxies (Robertson+ 2013, HUDF12) →
- Simple answer: minihalos
 - hints from semi- analytical studies by Haiman & Bryan (over- boosting τ); Wyithe & Cen;
 - inhomogeneous physical processes → Yes, we still need numerical simulations!!

Motivation/Puzzle/Our answer

- Lost photon budget

 first stars in minihalos
- Late reionization(z_{ov}<7) & high τ conditions: hard to match simultaneously w/o first stars
 - hard in numerical simulations (lliev+; Zahn+; Trac & Cen)
 - hard with observed galaxies (Robertson+ 2013, HUDF12) →
- Simple answer: minihalos
 - hints from semi- analytical studies by Haiman & Bryan (over- boosting τ); Wyithe & Cen;
 - inhomogeneous physical processes → Yes, we still need numerical simulations!!

What's new?

- <u>Populating grid with</u> minihalos (first stars!)
 - small- box (6.3/h Mpc) simulation resolving minihalos
 - correlation between density & minihalo population (nonlinear bias: KA+ in preparation)
 - put one Pop III star per minihalo

What's new?

- Populating grid with minihalos (first stars!)
 - small- box (6.3/h Mpc) simulation resolving minihalos
 - correlation between density & minihalo population (nonlinear bias: KA+ in preparation)
 - put one Pop III star per minihalo
- Considering photodissociation of coolant
 - calculate transfer of Lyman-Werner Background (KA+ 2009)
 - remove first star from minihalos, if LW intensity overcritical

How LW transfer done: Picket-Fence Modulation Factor (KA+ 2009)

- Sources distributed inhomogeneously: Need to sum individual contribution
- One single source is observed as a picket-fence in spectrum
- Obtain pre-calculated "picket-fence modulation" factor and multiply it to L_v /D_L². This becomes mean intensity to be distributed among H₂ rovibrational lines.
 - Relative flux averaged over E=[11.5 13.6] eV
 - multi-frequency phenomenon \rightarrow single-frequency calculation with precalculated factor \rightarrow Huge alleviation computationally.

What do we expect

- More extended reionization
- Same x_e but different morphology, with and without minihalos (c.f. McQuinn+ 2007)
- More electron content → stronger polarization of CMB
- Earlier heating of intergalactic medium
- Earlier Ly α pumping on 21cm
- result in KA+ 2012

114/h Mpc, w/ Minihalo+ACH, M(Pop III star)=300M_o, J_{LW,th}=0.1x10⁻²¹ erg cm⁻² s⁻¹ sr⁻¹

With and Without Minihalos

Storyline

- Minihalos (<~ $10^8 M_{\odot}$)
 - starts reionization
 - very extended reionization history
 - 20% ionization, boost in optical depth by ~40% possible
- Massive halos (>~ $10^8 M_{\odot}$)
 - determines when reionization is completed
- Same ionization fraction → same H II morphology ??
 - cf. McQuinn+ 2007
 - same ionization fraction very different morphology among models (contradicting McQuinn+ 2007)
- Late reionization, large optical depth: both can be achieved only with help of minihalo sources, or namely the first stars
- Observations will nail it

puzzle solvable

Early vs. Late Reionization Models No-minihalo vs. Minihalo Models

Observational prospects – large-scale CMB (E-mode polarization)

Q: Can Planck smell first stars?

(WMAP not that accurate)

- COSMOMC (Lewis, Briddle)
 - Aimed at CMB / matter power spectrum (linked with CAMB, also at Antony's shop at http://cosmologist.info)
 - Does it all
 - Can be tailored for generic application
 - Can be tailored for your custom universe
 - Publicly available
 - Parallelized
- COSMOMC allowing for generic ionization histories (Mortonson & Hu)

Planck Forecast

$$\frac{Z_{ov} < 7}{(common)} \xrightarrow{high-T} vs. \quad low-T}{(w/minihalo)} \quad (wo/minihalo) \\ (w/first star) \quad (wo/first star)$$

Hu & Holder; Motonson & Hu: PCA for reionization

Planck Forecast

wl first star VS. wolfirst star cblack) (red, blue, cyan)

Observational prospects – small-scale CMB (temperature)

Dominant process

Sunyaev- Z'eldovich effect

kinetic NNN

CMB temperature anisotropy at small scale

Reichardt+ 2012 South Pole Telescope (SPT)

Observational prospects – 21cm background (preliminary)

<u>Weather forecast from San Diego: 21cm forecast (KA+</u> <u>in prep) for "rare peak" (Xu+ 2013)</u>

- Very rare, high- density peak
 - size ~ 20 Mpc comoving
 - UV only result (Hao+ 2013)
 - UV (Pop III, Pop II) + X- ray (Pop III) (Hao+ in prep)
- 21cm forecast
 - x- ray heating (Pop III) included
 - Lyman alpha pumping (Pop III, Pop II) by cascading Lyman resonant lines (Pritchard & Furlanetto) included
 - retarded time emissivity
 - rare peak in emission, rest in absorption at ~ several 100 mK (unfiltered)
 - 1', 0.2 MHz filtering (~ SKA) \rightarrow all in absorption at ~a few 100 mK

Of course big-H II bubble structure easier to probe

Summary

- New theoretical, observational developments in cosmic reionization
- Minihalo (first stars) included simulation (KA+)
 - full dynamic range for ionizing sources (minihalos+atomic cooling halos) achieved in simulation
 - z~7 LAE (reionization ending) + CMB observations (high optical depth) achieved simultaneously
 - very extended $\Delta z \sim 6.5$, contradicting SPT claim $\Delta z < 4$ (by Zahn+)
 - Planck can smell the first stars! (polarization, 2014)
 - post- Planck EoR language: not just { τ , z_{reion} }: m_1 , m_2 , m_3 , ...
- Good fun expected before 21cm observation for reionization- history digging (high- z 21cm observation will surely nail it; better kSZ constraint too...)