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What Social Media say about Exploring the
High-Redshift Frontier:

facebook
(author unknown)
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Goals of this talk
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When and how did the first galaxies form?
How fast did they grow and build-up?

Epoch of Reionization

Thanks to WFC3/IR: now able to overcome z~6-7 “barrier”
Now have large samples (>300) of galaxies in heart of reionization at z>6

==

rest-UV rest-optical
SFRs Masses



Do we see Evidence for Emergence of
the First Galaxies?
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Redshift

Galaxy Build-up at z<8 progresses monotonically.
What about at z>8?



WFC3/IR Data around GOODS-South

z~10 search Ly Redshift
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= Large amount of public optical (ACS)

and NIR (WFC3) data

HUDFI2 & XDF
ERS
CANDELS (Deep & Wide)

= Total of ~160 arcmin?

= Reach to 27.5 - 30 AB mag

* Full data: can select z~10 galaxies

* HUDFI2/XDF: can select z~9 galaxies




z~9 LBG Selections with HUDFI12 Data

z~9 Selection is based on a red color in (Y])-JH and optical non-detection.
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Our HUDFI12 z~9 LBG sample contains seven sources (H = 28.0 - 29.9 mag, <zphot> = 8.7)



Z~9 Sample
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Z~9 Sample

SED fits using all HST and
IRAC &2 bands

2 photo-z codes: EAZY + ZEBRA
Photometric Redshifts: z~8.1-9.0

All sources have secondary peak
in their p(z)

Statistically expect one source to
be a low-redshift contaminant.

i.e. contamination fraction <15%
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| |
Our previous z~10 candidate in the HUDF
Bouwens et al. Nature, January 201 |



Nature of UDFj-39546284?

Our previous
z~ 10 source
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Nature of UDF}j-39546284 - Clues from 3D-HST

| | | | | |
T |
o 1//
E F I .
Q ~———
.E = E——
5 G141 [ F140W [ F160W x
1.1 1.2 1.3 1.4 15 1.6
A/um
N b SR L B e e I I R
v | EECATAE S f et e
L _‘:_:-:. .ﬂ --L:_:i_ﬁ’:_j:'&..:..f:'-:_ﬁ-:.__‘-_._;=:-' *j;i. o ;w:.:--lh;l:.i..:'{-’=1;‘_‘, g i 5, ;_:Tt:.l _::,-_
i = B e e
L 1 i.,,# - 5 - g =
15 e R S S G S WP ".‘--‘
& Brammer+13
O
g 10f |
o
5 st |
3
g of
10 I I | | I | | |
8l UDFj-39546284 -
6 Lya, z=12.12?7 A
e
A [OI1]A5007, z = 2.19?

Potential line detected in Grism spectroscopy. However, also such strong line emitters are extremely rare.

We will treat this source as an upper limit in the SFRD at z~11-12.



HUDFI2+HUDF09+GOODS-S z~10 Sample

The z~10 selection can be applied to all the data around GOODS-S (J-H>1.2).
We confirm one of our initial sources to be a high-quality z~10 candidate.
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Expectation from Smoothly Evolving LF to z>8
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If LF evolution was constant across z~4 to z~10, we should have seen 9 z~10 sources
in our data. But, we find only |.The chance of that happening is only 0.5%.

Therefore, galaxy evolution at z>8 is accelerated.



The z~9 and z~10 UV LF Constraints
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First Constraints at z~9:

Number of sources is small in each
bin, however, all determinations lie
systematically below extrapolation
of low-z trends.

z~|0 Sample only contains one
source: mostly only upper limits.

Three HUDFO09/12 Fields:
z~ 10 limits are below extrapolation



Accelerated Evolution is Expected from Models

pc’]
>
o1

ol
~,
.........

N
(o))

HUDF12/XDF

N)
o
Ul

=

N

1L

Ry

5

= 25.5~ 30 -
_4%- MUV <-=-17.7 X

A 25 .. i _
fry —— Empirical R

g 24.5 —— Trenti+10 I Ve
= - - - Lacey+11

3 24— ... - Finlator+11 |
> |

5 Jaackst+12

o

O

w
AN
&
o
~

8 9 10 11 12
Redshift

Accelerated evolution is in agreement with theoretical models.
Major driver is most likely the underlying DM halo MF.



z~9 Samples from CLASH

OPT F105W

|
MACS1149-JD

|
MACSJ1115-JD1

MACSJ1720-JD1

Bouwens et al. 201 3:
analyzed |19 CLASH clusters

using LBG selection tuned to z~9

identified 3 candidates

Hag = 25.7 - 26.9
magnification: 5-15

use relative abundance to z~8 galaxies to

overcome volume uncertainties due to lensing

for constraints on LD evolution

F110W  F125W

F140W
|

F160W
|

[3.6]

[4.5]



Two Additional z~10 Candidates from CLASH

Zheng+12 z=9.6, H=25.7, mu=14-26

Coe+12 z=10.7, H=25.9/26.1/27.3, mu~8/7/2



SFRD Evolution at z>8
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Combining the constraints from CLASH and HUDF+GOODS-S data, we still find
extremely rapid evolution in the cosmic SFRD.

Compare with conclusions from: Zheng+12, Coe+ |3, Bouwens+13, Ellis+13, McLure+13



SFRD Evolution at z>8
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Rapid build-up of SFRD in galaxies within only 170 Myr

But: observational result is still uncertain and needs confirmation
with future, deep data, e.g. Frontier Fields, and, at z>=10, JWST!



The Cosmic Dawn in the Near Future:

The HST Frontier Fields

Abell 2744 MACSJ0416.1-2403 MACSJ0717.5+3745

MACS] 1 149.5+2223. Abell370 RXCJ2248-443 |

= |f SFRD decline was steady as at z=4-8: expect
~30 z~10 galaxies in all 12 HFFs

= |f SFRD decline is as rapid as currently
indicated: only ~3 z~ 10 galaxies expected
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HST Frontier Fields will
vastly improve constraints on
SFRD evolution at z>8 with
4-6 clusters and parallel blank
field data with IRAC coverage
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Using Spitzer IRAC to Constrain Mass-Build
up to z~8

Spitzer IRAC probes rest-frame optical



Ultra-Deep IRAC Data over the HUDF09

Pl: Labbe

IRAC is crucial for rest-frame optical SEDs
and constrains on stellar masses/ages at z>4
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Extracting Rest-Frame Optical Photometry

(not shown to scale)

derived iteratively
from data

¢ “IVOPHOT*

Need to model neighboring sources in a crowded field to extract accurate photometry



Mass Estimates are now possible out to z~8

few robust individual

The I[UDFI0 led to the first robust (>50) detections of 9 z~8 candidates

(~32% are detected at >30).

Median stacked images of 55 Y-dropouts in IUDF10 yield z~8 SED at >L*.

detections
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clear detections in stacks

Labbé, Oesch et al. 2012

AB magnitude

spectral break: indicates ages>~200 Myr,

i.e.onset of SF at z>~1 |

typical galaxy has mass of 1e9 Msol
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Evolution of the Mass Function
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See also: Stark et al. 2009, Lee et al. 2012



Caveat: Strong Emission Lines

on average: 0.3 mag
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Strong rest-frame optical emission lines can significantly contribute to IRAC flux measurements.
These will thus bias mass measurements. Important to estimate the magnitude of this effect.

See e.g. Shim+1 |, Stark+12, Gonzalez+12



Stellar Mass Density

Zero-th order empirical correction for ELs: = up to a factor 2-3x in stellar mass density
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SFRD and SMD are in very good agreement!




A Rest-Frame Optical View on z~4 Galaxies

Large samples of galaxies available with deep IRAC coverage:
IUDF program (PI: Labbe) 125 h, S-CANDELS 50h exposures



HST only probes UV: UV Continuum Slopes

Large body of literature on inferring physical properties of high-z galaxies based on
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See also: Wilkins+1 1, Dunlop+1 |, Castellano+ 1 |, Bouwens+09/10, Finkelstein+10/1 |, Rogers+13



rest-frame UV-optical

The Rest-Frame Optical View of z~4 Galaxies

At z~4, we now have samples of 2600 galaxies in GOODS-S/N and the IUDFIO0
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Brighter galaxies are significantly redder in their UV-to-optical colors wrt fainter sources.

Bright galaxies also show redder UV continuum slopes.



Rest-Frame Optical vs Rest-Frame UV View
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Rest-frame optical view reveals that z~4 galaxy population is more diverse
than what is inferred from UV-based analyses.

IRAC data is crucial for working toward a self-consistent picture of star-
formation and stellar mass build-up in high redshift galaxies!



The (IR) Future is Bright: SEDS + S-CANDELS

= All HST CANDELS fields are now covered with 50h IRAC data (~26.8 mag)
= very large samples of LBGs from HST: ~10°000 z>=4 sources
" individually detect L* galaxies in rest-optical out to z~8 (~1e9 Msol)

= MFs, duty cycles, etc..

EGS

COSMOS




summary

= WEFC3/IR has opened up the window to very efficient studies of z>6.5 galaxies: by
now, we have identified >300 galaxy candidates at these redshifts; 3 at z~10.

* The XDF/HUDFI2 data allowed for searches of zZ~9=11 LBGs, resulting in smaller
numbers of candidates than expected from monotonic evolution of the UV LF across
z=8 to z=4. Galaxy SFRD increases by ~| order of mag in 170 Myr from z~10 to z~8.
= Accelerated evolution is most likely explained by growing DM halo MF.

= Combination of very deep HST and IRAC data allows for rest-frame optical
detection of individual galaxies out to z~8, and MF determinations starting from only
750 Myr after the Big Bang.

= Rest-frame optical data from IRAC is crucial for self-consistent picture of star-
formation and stellar mass build-up (z~4 UV binned SEDs are very different from
9000 A binned ones: increase in dust extinction in high mass galaxies).

= Great prospects for high-z frontier before JWST based on deep IRAC S-
CANDELS data (MFs, SF duty cycle, etc..) + Hubble Frontier Fields (SFRD evolution to

z~10, UV continuum slopes, etc..)



