+

First results from MOSFIRE: near–IR spectroscopy of high–redshift galaxies

Matthew Schenker Caltech Reionization in the Red Centre 7.18.13

Richard Ellis, Dan Stark, + Nick Konidaris

- Nebular emission what do we know already? Evidence and consequences for strong H
 detections using broadband photometry (Stark, MAS et al. 2013)
- Keck spectroscopic survey targeting 3.0 < z < 3.8 LBGs with MOSFIRE

Part I

- Direct spectroscopic confirmation of strong nebular lines
- Validation of deriving line strength through broadband photometry
- Consequences for sSFR

Part II

• Lyman α velocity offset - connection to reionization models

* Spitzer detections - Evolved stellar mass or strong nebular emission?

- Initial detection of red rest frame UV– Optical color in z ~ 6–7 LBGs taken as evidence for large stellar masses, old populations when age of universe only ~1 Gyr (ex. Eyles et al. 2007, Gonzalez et al. 2010)
- BUT emission line equivalent width increases as (1+z) -> strong nebular lines can contaminate broadband fluxes, mimic Balmer/4000Å break (ex. Scharer & deBarros 2010)
- Stark, MAS et al. 2013 takes advantage Unique window at 3.8 < z < 5.0 to study Hα strength at high-z (Shim et al. 2011)

 \mathbf{Z}

3

Evidence for large nebular EWs?

+

- Surveyed 45 galaxies between 3.8 < z < 5.0 with robust (>5.0 o) IRAC
 [4.5] µm detections to achieve robust measurement of rest-optical stellar continuum
- Using difference between synthetic and observed [3.6] photometry, derive mean Hα EW ~ 270 Å, rest frame

* Evolution and effect on stellar masses

Stark, MAS et al. (2013)

* Evolution and effect on sSFR

See also Gonzalez et al. (2013)

* MOSFIRE campaign – target selection

- 13 DEIMOS-confirmed z > 3.3 galaxies from Keck spectroscopic survey (Stark et al. in prep.)
- Additional 14 B-drops selected to have non-negligible probability to lie at 3.0 < z < 3.8 ([OIII], Hβ in MOSFIRE K-band)
- Total of 20 objects confirmed with either MOSFIRE or DEIMOS

* MOSFIRE campaign – target selection

- 13 DEIMOS-confirmed z > 3.3 galaxies from Keck spectroscopic survey (Stark et al. in prep.)
- Additional 14 B-drops selected to have non-negligible probability to lie at 3.0 < z < 3.8 ([OIII], Hβ in MOSFIRE K-band)
- Total of 20 objects confirmed with either MOSFIRE or DEIMOS

Data – robust emission line detections

10

* Serendipitous detections

- Some of strongest emission lines observed part of starforming complex
- 'B' originally targeted LBG, 'A', and 'C' identified in MOSFIRE spectra and confirmed to be B-drops in HST imaging
- 'C' component has EW_[OIII] ~ 4000Å

Spectroscopic EW distribution

+

Comparison with Stark, MAS et al. 2013

• Want to investigate whether photometrically-infererred H α distribution at 3.8 < z < 5.0 is reasonable given our robust [OIII] EW distribution at 3.0 < z < 3.8

Assume:

+

- Flux ratio of H alpha : OIII = 1 : 2.2, motivated by empirical line fluxes from Anders and Alvensleben 2003, with Z = 0.2 Z_{sun}
- Flat stellar continuum between H alpha and [OIII]
- Intrinsic distribution is lognormal, as derived in Stark et al. (2013), gives for [OIII] EW_c = 350 Å, σ = 0.25
- Perform MC simulation, add noise consistent with our observations

* Validating the Stark, MAS et al. (2013) method

- Unique data set allows us to test the method of deriving emission line strengths from contaminated broadband photometry
- Out of 20 objects, 9 include a robust IRAC detection in either [3.6] or [4.5] band. Fit SED ignoring K-band photometry, then derive estimated line strength from difference between synthetic and observed fluxes

Validating the Stark, MAS et al. (2013) method

Out of 9 objects, predict (and observe) significant line fluxes in 8

- 7 these 8 objects have $1/1.7 < f_{pred} / f_{obs} < 1.7$
- Remaining object with observed [OIII] < 7.0e–18 predicted by our method to have no significant line flux (below left)

÷

Validating the Stark, MAS et al. (2013) method

Out of 9 objects, predict (and observe) significant line fluxes in 8

• 7 these 8 objects have $1/1.7 < f_{pred} / f_{obs} < 1.7$

+

 Remaining object with observed [OIII] < 7.0e–18 predicted by our method to have no significant line flux (below left)
 Similar windows at z > 6.6

sSFR implications

+

- Using H β measurements and SEDs, predict average EW_{H α} = 380 Å
 - Factor of ~4 higher than Erb et al. (2006) at z ~ 2 (though our sample at lower masses)
- For 8 galaxies with Hβ detected at > 3σ, median EW_{Hα} = 680 Å!

Part II: Reionization

+ Reionization tests – $x_{Ly\alpha}$

- $x_{Ly\alpha}$ = Fraction of LBGs which display strong Ly α in emission
- Relevant: forthcoming sample of 200
 6 < z < 7.3 LBGs from VLT large program (Fontana)
- Incredibly important to inferring a neutral Hydrogen fraction, X_H, from any decrease in x_{Lyα} is the velocity offset of Lyα from systemic velocity of galaxy

+ Lyman alpha velocity offset

Lyman alpha velocity offset

 Velocity offset with which Lyα emerges from galaxy critical to determine appropriate IGM transmission (Dijkstra et al. 2011, previous talk!)

+

 For our sample with both DEIMOS and MOSFIRE coverage, can compare velocity of Lyα w.r.t. sites of star formation

21

+ Lyman alpha velocity offset

- Confirm earlier findings of strong nebular emission lines at z > 3 with direct near-IR spectroscopy
- Validate technique of deriving high-z line strengths through broadband photometry
- Evidence for increase in sSFR beyond z = 2, more in line with theoretical expectations
- Lyman alpha velocity offsets provide valuable input for reionization modeling with x_{Lya} – perhaps no longer need to resort to extreme reionization scenarios

