Sgr A* eats G2 implications for scintillations

Mark Walker (Manly Astrophysics)

Comet C/2012 S1 (ISON)

Adam Block/Mount Lemmon SkyCenter/University of Arizona

Gillessen et al 2012

S2

G2 2011.3 G2 2008.3 G2 2004.5

40 mpc

What might happen to G2...

٠

Manly Astrophysics

M.Schartmann/MPE/ESO

The orbit of G2

Gillessen et al 2012

Simplest interpretation of G2

- Origin, as for comets
 - Oort cloud" of long-lived parent bodies
- Parents must be self-gravitating & stable
- Parents must not be too dense
 - UV radiation too weak to inflate a planet
 - Low temperature gas cloud
- \odot Molecular clouds of mass ~ 10⁻⁵ ${
 m M}_{\odot}$

Sgr A* is now our local AGN

- G2 is a single cloud moving at high speed
- Just add more clouds to get a quasar:
 - High continuum luminosity from accretion
 - Smooth, broad emission lines

Sgr A* is now our local AGN

- G2 is a single cloud moving at high speed
- Just add more clouds to get a quasar:
 - High continuum luminosity from accretion
 - Smooth, broad emission lines
- X-ray absorption events seen from individual BLR clouds (NGC1365: Maiolino et al 2010)

Sgr A* is now our local AGN

- G2 is a single cloud moving at high speed
- Just add more clouds to get a quasar:
 - High continuum luminosity from accretion
 - Smooth, broad emission lines
- X-ray absorption events seen from individual BLR clouds (NGC1365: Maiolino et al 2010)
- Can identify the NLR with the "Oort Cloud"
- Nobody thought of modelling BLR clouds as a new population of self-gravitating objects?!

Modelling small molecular clouds (with Mark Wardle)
1. Composition: 75% H₂, 25% He
2. Spherical symmetry
3. Hydrostatic equilibrium
4. Low radiative efficiency → Adiabatic convection Equation-of-state for ideal gas:

 $P \propto Q^{5/3}$ $Q \propto T^{3/2}$ $P \propto T^{5/2}$

Solid-gas phase equilibrium for H_2

Example solution $(M = 10^{-5} M_{\odot})$

Example solution $(M = 10^{-5} M_{\odot})$

Solutions with minimal snowflake content

The Helix Nebula

NASA/HST

The Helix Nebula (detail)

Tiny clouds are not unique to the Galactic Centre

Implications for scintillations

Implications for scintillations (Also, Tyoma's Talk)

Plasma lensing at low frequencies

- On't expect many "Fiedler Events" at low freq.
 - Lensing probability increases somewhat
 - But sources are much larger at low freq.

 -> flux changes will be smeared out
 - → unrecognisable events
 - Large flux changes only from nearby lenses
 - A small amount of flux will be refracted through large angles
 - Multiple imaging of pulsars
 - Can detect & monitor via spectroscopy
 - But scattering in diffuse ISM smears signal

Summary

- G2 is the prototype BLR cloud
- Perturbed into current orbit from Galactic "NLR"
 - The NLR is an "Oort Cloud" of small, cold, self-gravitating molecular gas clouds
- Modelling shows such clouds are robust
 - H_2 snow plays a key role
- Supersonic clouds shock-heat the diffuse ISM
 - Lensing from surface layer of ionised gas
 Fiedler Events
 - Scattering from the magnetotail
 - Ionised gas & charged H₂ dust
- Low-frequency studies of lenses not compelling