

Ephemeral Universe Perth 12 Nov 2013

Ron Ekers CSIRO/Curtin, Australia

SgrA* magnetar

- Galactic Centre magnetar J1745-2900
 - discovered by the *Swift* satellite¹
- Pulsing source of both X-rays² and radio waves^{3,4,5,6}
- Period of 3.76 seconds
- Regular pulsar
 - very high dispersion and Faraday rotation^{4,5,7}
 - -3'' (0.1 parec) from the centre of the Galaxy.
- Mysterious zero DM signal

Zero DM magnetar

- Parkes and Greenbank reported periodic radio emission with almost the same period as the magnetar but with near-zero dispersion⁸
 - *Burgay et al Atel #5035 (2013)*
- Has to be local so generate radio in our atmosphere
 - Only pulsed gamma rays from Magnetar can do it
 - Need to amplify the radio (maser emission)
 - Search for nsec time scale pulses
- Can use the Parkes UHE neutrino detection backend

Goodbye zero dm magnetar

- Ryan Shannon observes
 - Strong periodic signa power
- John Reynolds: FT of N voltages
- **7.48** sec peak
 - periodic shift in HA

second harmonic 3.74 secMagnetar 3.76 sec !

But still triggered interesting follow-up

- Plasma amplification in air shower
 - Don Melrose talk
- Properties of radio pulses from air showers
 - Why this is very interesting

Karlsruhe Institute of Technology

- Searching for molecular bremsstrahlung.
 - Recombination time 10-100 nsec
- Array of 3m fixed dishes
 - 3x3 multi-beam receivers
 - 3-4 GHz

 CROME have found the distribution over the ground is a ring so they are seeing some kind of anisotropic emission and not molecular bremsstrahlung.

Crome

Why Radio

- Fluorescence detectors have too low a duty cycle to see rare events (10%)
- Radio detectors have 100% duty cycle
- Need radio detection to measure composition etc above the GZK threshold at 10¹⁹ eV
- Need to calibrate the radio detection method
 - Existing arrays are too small to reach 10¹⁹ eV but modeling can be validated at lower energy
- Extraction of information from air shower emission will require radio pulse imaging

High Energy Neutrino's

- Topological Defects
 - -10^{20} 10^{22} eV
 - Extremely uncertain
- UHE protons + CMB photons
 - $-10^{19}-10^{20}$ eV
 - Guaranteed both components seen!
 - What volume?
- AGN's
 - Up to 10^{20} eV
 - Wide range of models
- GRB's
 - $-10^{16} \,\mathrm{eV}$

Eg Protheroe Neutrino98, Takayama

Parkes 21cm Multibeam Experiment

Parkes 21cm Multibeam Experiment

Parkes: RFI pulse

Parkes: Possible Event

Parkes search for Cosmic Ray pulses

Parkes

- very high sensitivity but very narrow beam
- Use multi-beam to expand FoV
- $-\eta$ sec pulse detection on all 13 beams at 1.4 GHz
- Measure higher order statistics of undetected volages
- Gamma Rays direct from source
 - compensates for small FoV
- Sources
 - SgrA magnetar
 - Crab
 - Vela
 - RX J1713- 39 (PWN)
 - Zenith (blind CR search)