13/11/12-14, The Ephemeral Universe, Curtin, Perth

Strongly anisotropic scintillation from the dusty ISM?

Artem Tuntsov Manly Astrophysics

Most prominent scattering

- Extreme intra-day variables (IDVs): (PKS1257-326, PKS0405-385, J1819+3845, ...)
- Pulsar parabolic arcs: (just about any one when you look close enough)

Often show evidence for much anisotropy:

- Morphological *(little power within parabola Cordes+ 2006, Walker+ 2004)*
- Kinematical (two-station experiments - Walker, de Bruyn, Bignall 2009)
- Direct Imaging (*if can be converted to images - Rickett, Coles, Gao 2012*)

 $2.5^{F_{v}}_{\Gamma}$ 8.6 GHz 4.8 GHz 2.5 GHz 1.4 GHz 2.0 1.0 Day 22 24 28 20 26 30 B1133+16 2003.54 B1133+16 2002.48 85 lime (minutes) ime (minutes) 22 42 327.2 1175.0 314.8 321.0 1125.0 1225.0 Frequency (MHz) Frequency (MHz) 50.0 50.0 Fringe Frequency (10⁻³ Hz) Ŧ Ê requency 0.0 b а 3.0 0.0 1.5 30.0 0.0 15.0 Delay (µs) Delay (µs)

PKS 0405-385 (from L. Kedziora-Chudczer)

(from Cordes, Rickett, Stinebring, Coles 2006)

Assume:

- Pure 1D Gaussian fluctuations (across filaments, not along a filament)
- Power-law, inner/outer scale **if needed**
- power law index β between 2 and 4 (1D Kolmogorov is 1+5/3~2.67)

Simulate and compare:

- PKS 1257-326 (Bignall+ 2003):
 - individual light curves
 - inter-band (C/X) correlations and lags
- PSR 0834+06 (Walker & Stinebring 2005):
 - image (Walker+ 2008, Brisken+ 2010)
 - parabolic arc (in field hologram)

PSR and IDV analyses done independently

- Models fit data, constraints are weak
- Two constraint sets are consistent
- Broadly Kolmogorov (2.5≤β≤3) (unless such inner/outer scales that not quite power law)
- when fixed ($\beta \approx 3$), outer scale $\leq 10^{13-14}$ cm
- Amazingly, both screens can physically be the same thing: $n_e \approx 10 30 \text{ cm}^{-3}$

Assume:

- Pure 1D Gaussian fluctuations (across filaments, not along a filament)
- Power-law, inner/outer scale **if needed**
- power law index β between 2 and 4 (1D Kolmogorov is 1+5/3~2.67)

Simulate and compare:

- PKS 1257-326 (Bignall+ 2003):
 - individual light curves
 - inter-band (C/X) correlations and lags
- PSR 0834+06 (Walker & Stinebring 2005):
 - image (Walker+ 2008, Brisken+ 2010)
 - parabolic arc (in field hologram)

PSR and IDV analyses done independently

- Models fit data, constraints are weak
- Two constraint sets are consistent
- Broadly Kolmogorov (2.5≤β≤3) (unless such inner/outer scales that not quite power law)
- when fixed ($\beta \approx 3$), outer scale $\approx 10^{13-14}$ cm
- Amazingly, both screens can physically be the same thing: $n_e \approx 10 30 \text{ cm}^{-3}$

Assume:

- Pure 1D Gaussian fluctuations (across filaments, not along a filament)
- Power-law, inner/outer scale **if needed**
- power law index β between 2 and 4 (1D Kolmogorov is 1+5/3~2.67)

Simulate and compare:

- PKS 1257-326 (Bignall+ 2003):
 - individual light curves
 - inter-band (C/X) correlations and lags
- PSR 0834+06 (Walker & Stinebring 2005):
 - image (Walker+ 2008, Brisken+ 2010)
 - parabolic arc (in field hologram)

PSR and IDV analyses done independently

- Models fit data, constraints are weak
- Two constraint sets are consistent
- Broadly Kolmogorov (2.5≤β≤3) (unless such inner/outer scales that not quite power law)
- when fixed ($\beta \approx 3$), outer scale $\leq 10^{13-14}$ cm
- Amazingly, both screens can physically be the same thing: $n_e \approx 10 30 \text{ cm}^{-3}$

Assume:

- Pure 1D Gaussian fluctuations (across filaments, not along a filament)
- Power-law, inner/outer scale **if needed**
- power law index β between 2 and 4 (1D Kolmogorov is 1+5/3~2.67)

Simulate and compare:

- PKS 1257-326 (Bignall+ 2003):
 - individual light curves
 - inter-band (C/X) correlations and lags
- PSR 0834+06 (Walker & Stinebring 2005):
 - image (Walker+ 2008, Brisken+ 2010)
 - parabolic arc (in field hologram)

PSR and IDV analyses done independently

- Models fit data, constraints are weak
- Two constraint sets are consistent
- Broadly Kolmogorov (2.5≤β≤3) (unless such inner/outer scales that not quite power law)
- when fixed ($\beta \approx 3$), outer scale $\approx 10^{13-14}$ cm
- Amazingly, both screens can physically be the same thing: $n_e \approx 10 30 \text{ cm}^{-3}$

Assume:

- Pure 1D Gaussian fluctuations (across filaments, not along a filament)
- Power-law, inner/outer scale **if needed**
- power law index β between 2 and 4 (1D Kolmogorov is 1+5/3~2.67)

Simulate and compare:

- PKS 1257-326 (Bignall+ 2003):
 - individual light curves
 - inter-band (C/X) correlations and lags
- PSR 0834+06 (Walker & Stinebring 2005):
 - image (Walker+ 2008, Brisken+ 2010)
 - parabolic arc (in field hologram)

PSR and IDV analyses done independently

- Models fit data, constraints are weak
- Two constraint sets are consistent
- Broadly Kolmogorov (2.5≤β≤3) (unless such inner/outer scales that not quite power law)
- when fixed ($\beta \approx 3$), outer scale $\approx 10^{13-14}$ cm
- Amazingly, both screens can physically be the same thing: $n_e \approx 10 30 \text{ cm}^{-3}$

Assume:

- Pure 1D Gaussian fluctuations (across filaments, not along a filament)
- Power-law, inner/outer scale **if needed**
- power law index β between 2 and 4 (1D Kolmogorov is 1+5/3~2.67)

Simulate and compare:

- PKS 1257-326 (Bignall+ 2003):
 - individual light curves
 - inter-band (C/X) correlations and lags
- PSR 0834+06 (Walker & Stinebring 2005):
 - image (Walker+ 2008, Brisken+ 2010)
 - parabolic arc (in field hologram)

PSR and IDV analyses done independently

Infer:

- Models fit data, constraints are weak
- Two constraint sets are consistent
- Broadly Kolmogorov (2.5≤β≤3) (unless such inner/outer scales that not quite power law)
- when fixed ($\beta \approx 3$), outer scale $\leq 10^{13-14}$ cm
- Amazingly, both screens can physically be the same thing: $n_e \approx 10 30 \text{ cm}^{-3}$

Such structures have no place in the ISM

- $T \sim 10^4 \text{ K} \implies P = n_e T \sim 10^5 \text{ cm}^{-3} \text{ K}$ (think ESE)
- Even worse for 1D structures:

whatever stretches them, should apply

even greater stresses

(Tuntsov, Bignall, Walker 2013)

Two ways out

Boring: refine the model

- Intermittency of turbulence
- Non power-law or non-Gaussianity of fluctuations
- Finite scattering anisotropy
- Source anisotropy or non-trivial structure
- Smooth plasma distribution along l.o.s.
- ??????

to reduce implied n_e - or get rid of anisotropy

Fun: question pressure/balance

- Favourable geometry
- New ISM phases with necessary pressure and anisotropy
- Short-lived structures
- Naturally anisotropic media
- Non-conventional P(n_e) or T
- ???????

to squeeze them in.

Such structures have no place in the ISM

• $T \sim 10^4 \text{ K} \implies P = n_e T \sim 10^5 \text{ cm}^{-3} \text{ K}$

(think ESE)

Even worse for 1D structures:

whatever stretches them, should apply

even greater stresses

(Tuntsov, Bignall, Walker 2013)

Two ways out

Boring: refine the model

- Intermittency of turbulence
- Non power-law or non-Gaussianity of fluctuations
- Finite scattering anisotropy
- Source anisotropy or non-trivial structure
- Smooth plasma distribution along l.o.s.
- ???????

to reduce implied n_e - or get rid of ar

Fun: question pressure/balance

- Favourable geometry
- New ISM phases with necessary pressure and anisotropy
- Short lised structures
 Naturally anisotropic media
- Non-conventional P(n_e) or T

to squeeze them in.

Dust!

Such structures have no place in the ISM

- $T \sim 10^4 \text{ K} \implies P = n_e T \sim 10^5 \text{ cm}^{-3} \text{ K}$ (think ESE)
- Even worse for 1D structures:

whatever stretches them, should apply

even greater stresses

(Tuntsov, Bignall, Walker 2013)

Dust(y) plasma

Dust:

- Present in ISM
- May be naturally anisotropic (comets)
- If made of solid H₂, can provide abundance of (nearly) free electrons:
 - negative electron affinity
 - slow charge build-up \Rightarrow stabilisation
 - ions lodge into lattice
 - electrons can move along surface

Dust(y) plasma

Dust:

- Present in ISM
- May be naturally anisotropic (comets)
- If made of solid H₂, can provide abundance of (nearly) free electrons:
 - negative electron affinity
 - slow charge build-up \Rightarrow stabilisation
 - ions lodge into lattice
 - electrons can move along surface

Dust(y) plasma Dust:

- Present in ISM
- May be naturally anisotropic (comets)
- If made of solid H₂, can provide abundance of (nearly) free electrons:
 - negative electron affinity
 - slow charge build-up \Rightarrow stabilisation
 - ions lodge into lattice
 - electrons can move along surface

(Weingartner & Draine 2001, Frisch+ 1999)

$$\begin{split} & \Sigma_e \sim 10^{14}\,cm^{-2} \\ & T_{triple\ point} \approx \!\!14\ K \\ & P_{sat} << P_{ISM} \\ & (Walker\ 2013) \end{split}$$

Scattering. Radio refractive index

Grains

• H₂ bulk: Essentially DC response at radio

 $\omega_{\rm eff}^2 = \frac{4 \pi e^2 \Sigma_{\rm e}}{m_{\rm e} a}, \quad \omega_{\rm eff} \approx 2 \times 10^{14} a_{\mu \rm m}^{-1/2} \rm s^{-1}$

− *i.e.* $\epsilon \approx 1 + g = const$ at radio frequencies

 ε - 1 ≈ 0.27 - 5×10⁻¹⁵ i $\nu_{\rm GHz}$

• Electron shell (dipole approximation):

not a plasma - curvature

 $\epsilon - 1 = \frac{g \omega_{\text{eff}}^2}{\omega_{\text{eff}}^2 - \omega^2}, \quad g \sim \mathcal{O}(1)$

Medium

• Maxwell-Garnett law:

 $\begin{aligned} \boldsymbol{\varepsilon}_{medium} &- 1 \approx f_{V} \left(\boldsymbol{\varepsilon}_{grain} - 1 \right) \\ n \approx 1 + \frac{1}{2} \left\langle f_{V} \left(\boldsymbol{\varepsilon}_{grain} - 1 \right) \right\rangle \end{aligned}$

 $\Rightarrow Phase delay:$ $\phi = \pi \lambda^{-1} \int dD f_V(\epsilon_{grain} - 1)$

$$\begin{split} & \Sigma_e \sim 10^{14}\,cm^{-2} \\ & T_{triple\ point} \approx \!\!14\ K \\ & P_{sat} << P_{ISM} \\ & (Walker\ 2013) \end{split}$$

positive

— **i.e.**, wrong twice:

• $\propto 1/\lambda$

Scattering. Impact on parabolic arcs

— i.e., not much impact at all (as shown in Cordes+ 2006)

Scattering. Band-to-Band scalings Normal

• $\langle \mathbf{\phi}(\mathbf{r}) \mathbf{\phi}(\mathbf{r}+\mathbf{s}) \rangle \propto \mathbf{\lambda}^2 \mathbf{s}^{\alpha}$

(Kolmogorov: s^{5/3})

- Scattering disc:
 - $s_0 \propto \lambda^{-2/\alpha}$ ($\lambda^{-6/5}$)
- Scattering angle:
 - $\Theta_0 \propto \lambda^{1+2/\alpha} \qquad (\lambda^{2.2})$
- Bandwidth:
 - $\Delta_{\mathcal{V}} \propto \lambda^{2+4/\alpha}$ ($\lambda^{4.4}$)
- Dispersive (wave-speed)
 delays:

 $\phi \propto \lambda$, $\tau \propto \lambda^2$

Dusty

• $\langle \mathbf{\phi}(\mathbf{r}) \mathbf{\phi}(\mathbf{r}+\mathbf{s}) \rangle \propto \mathbf{\tilde{\lambda}}^{-2} \mathbf{s}^{\alpha}$

(Kolmogorov: s^{5/3}?)

• Scattering disc:

$$s_0 \propto \lambda^{2/\alpha}$$
 ($\lambda^{6/5}$)

• Scattering angle:

$$\Theta_0 \propto \lambda^{1-2/\alpha} \qquad (\lambda^{-0.2})$$

• Bandwidth:

 $\Delta_{\mathcal{V}} \propto \lambda^{2-4/\alpha}$ ($\lambda^{-0.4}$)

 Dispersive (wave-speed) delays:

$$\mathbf{\phi} \propto \mathbf{\lambda}^{-1}, \quad \mathbf{\tau} \propto \mathbf{\lambda}^{0}$$

Scattering. Band-to-Band scalings

 $(\lambda^{-6/5})$

Normal

• $\langle \mathbf{\phi}(\mathbf{r}) \mathbf{\phi}(\mathbf{r}+\mathbf{s}) \rangle \propto \mathbf{\lambda}^2 \mathbf{s}^{\alpha}$

(Kolmogorov: s^{5/3})

• Scattering disc:

 $s_0 \propto \lambda^{-2/\alpha}$

- Scattering angle:
 - $\Theta_0 \propto \lambda^{1+2/\alpha} \qquad (\lambda^{2.2})$
- Bandwidth:

 $\Delta_{\mathcal{V}} \propto \lambda^{2+4/\alpha}$ ($\lambda^{4.4}$)

• Dispersive (wave-speed) delays:

 $\phi \propto \lambda$, $\tau \propto \lambda^2$

Dusty

• $\langle \mathbf{\phi}(\mathbf{r}) \mathbf{\phi}(\mathbf{r}+\mathbf{s}) \rangle \propto \mathbf{\tilde{\lambda}}^{-2} \mathbf{s}^{\alpha}$

(Kolmogorov: s^{5/3}?)

• Scattering disc:

$$s_0 \propto \lambda^{2/\alpha}$$
 ($\lambda^{6/5}$)

• Scattering angle:

$$\Theta_0 \propto \lambda^{1-2/\alpha} \qquad (\lambda^{-0.2})$$

• Bandwidth:

$$\Delta_{\mathcal{V}} \propto \lambda^{2-4/\alpha}$$
 ($\lambda^{-0.4}$)

• Dispersive (wave-speed) delays:

 $\mathbf{\phi} \propto \mathbf{\lambda}^{-1}, \quad \mathbf{\tau} \propto \mathbf{\lambda}^{0}$

Final nail. Extinction.

Phase delay:

$$\boldsymbol{\Phi} = \boldsymbol{\pi} \, \boldsymbol{\lambda}^{-1} \int dD \, f_{\mathrm{V}}(\boldsymbol{\varepsilon}_{\mathrm{grain}} - 1)$$

Extinction depth:

• $\boldsymbol{\tau} \sim Q_{ext}(\boldsymbol{\lambda}) G$

~
$$Q_{\text{ext}}(\boldsymbol{\lambda}) \int dD N_{\text{grain}} \boldsymbol{a}^2$$

$$\sim Q_{\text{ext}}(\lambda) \phi \lambda / a \sim 10^7 Q_{\text{ext}}(\lambda) \lambda_m / a_{\mu m}$$

•
$$Q_{\text{ext}}(\lambda) \approx (a/\lambda)^2$$
 when $a \ll \lambda$

$$≈1$$
 when $a ≥ λ$

— i.e., need *a*~1 nm for PSR/IDVs

to be seen in the optical 😕

Conclusions

- * 1D scattering works well for (some) PSRs and IDVs
- H₂ dust is naturally filamentary and could produce scattering required
- * However, it is unlikely to be responsible because:
 - band-to-band variations are contrary to observed
 - extinction is too high for realistic dust sizes

13/11/12-14, The Ephemeral Universe, Curtin, Perth

Strongly anisotropic scintillation from the dusty ISM?

Artem Tuntsov Manly Astrophysics 13/11/12-14, The Ephemeral Universe, Curtin, Perth

Strongly anisotropic scintillation from the dusty ISM? - Unlikely

Artem Tuntsov Manly Astrophysics

