Detecting FRBs w. TNG radio telescopes

all

SWINBURNE UNIVERSITY OF TECHNOLOGY TEUwWLFA (!) Meeting 12th November 2013, Perth, Australia.

@evanocathain

Swinburne

护	Stuart ***** @astronomyblog @evanocathain "Comments on a response to". Is astro-ph to into a forum? View conversation	28 Oct turning
R	Sharon @sharnic85 @evanocathain "@thats_melbourne: #Melbourne Knowledge starts tomorrow. ow.ly/q9HsI #MKW2013" Expand	27 Oct
LQ.	Terry O'Connor @rebelandwolf Radio-astronomers know how to name 'em! "Ephemeral Univ with Widefield Low Frequency Arrays" caastro.org/event/201 @evanocathain Expand	27 Oct verse 3-tra
	Adedayo @TrophyHusbandD Haha! I take it you're in rehab then? "@evanocathain: @TrophyHusbandD @samb8s Candy Crush: from the people v brought you crack." Expand	26 Oct who
u	Sam Bates retweeted you 26 Oct: Even if you win at Candy Crush, you lose.	26 Oct

Ŵ	Stuart ***** @astronomyblog @evanocathain "Comments on a response to". Is astro-ph t into a forum? • View conversation	28 Oct urning
	Sharon @sharnic85 @evanocathain "@thats_melbourne: #Melbourne Knowledge V starts tomorrow. ow.ly/q9Hsl #MKW2013" Expand	27 Oct Week
Lê,	Terry O'Connor @rebelandwolf Radio-astronomers know how to name 'em! "Ephemeral Univ with Widefield Low Frequency Arrays" caastro.org/event/2013 @evanocathain Expand	27 Oct verse 3-tra
	Adedayo @TrophyHusbandD Haha! I take it you're in rehab then? "@evanocathain: @TrophyHusbandD @samb8s Candy Crush: from the people w brought you crack." Expand	26 Oct who
tì	Sam Bates retweeted you 26 Oct: Even if you win at Candy Crush, you lose.	26 Oct

Fast Radio Transients

Why? How?

- A famous burst and its friends
- Rate estimates
- Ideas/questions for discussion this week

Why study transient radio phenomena? 2 main reasons.
1. Enables study of interesting physical environments.
2. You can't avoid them!

- Why study transient radio phenomena? 2 main reasons.
 1. Enables study of interesting physical environments.
 2. You can't avoid them!
- e.g. Pulse of 1 Jy lasting 1 ms from 1 kpc at obs freq. of 1 GHz (all very typical numbers!)
 - -> Causality gives size < 300 km
 - -> Brightness Temp >= 10^{23} K
 - -> Compact objects + non-thermal coherent emission
 - -> extreme astrophysical environments.

Why study transient radio phenomena? 2 main reasons.
1. Enables study of interesting physical environments.
2. You can't avoid them!

 \odot e.g. Pulse of 1 Jy lasting 1 ms with DM_{IGM}~1000 cm⁻³pc

- -> z~1! -> D hundreds of Mpc
- -> Causality gives size < 300 km
- -> Brightness Temp >= 10^{35} K
- -> Energy = $(1 \text{ Jy})(1\text{ms})4\pi(500 \text{ Mpc})^2(10 \text{ GHz}) = 10^{39} \text{ ergs}$
- -> Peak Luminosity = Energy/(1ms) = 10⁴² ergs/s
- -> These numbers are high (for radio), but << E_{SN}

Why study transient radio phenomena? 2 main reasons.
1. Enables study of interesting physical environments.
2. You can't avoid them!

- Why study transient radio phenomena? 2 main reasons.
 1. Enables study of interesting physical environments.
 2. You can't avoid them!
- Detected in abundance by TNG radio instruments (LOFAR, LWA, MWA, Molonglo 2.0, ASKAP, MeerKAT, FAST, ..., SKA).
 - -> would be nice to know what they are!

Radio Bursts

Burst Searches

ø Burst searches are basically ...

foreach DM (`make_a_dmlist`) dedisp -dm \$DM filterbank > timeseries thresh_search timeseries -width=range_widths

This is also the best way to find many PSRs (~30% at 1.4 GHz)

Transient Parameter Space

Originally PSR searches == burst searches. Realised PSRs very periodic -> can be better by N^{1/2}, where N=T_{obs}/P. PSR signal ~ Dirac comb -> FFTs

- Originally PSR searches == burst searches. Realised PSRs very periodic -> can be better by N^{1/2}, where N=T_{obs}/P. PSR signal ~ Dirac comb -> FFTs
- Everyone -> "let's not do high DMs, nothing there"

- Originally PSR searches == burst searches. Realised PSRs very periodic -> can be better by N^{1/2}, where N=T_{obs}/P. PSR signal ~ Dirac comb -> FFTs
- Severyone -> "let's not do high DMs, nothing there"
- McLaughlin -> "let's find PSRs in SP searches again" -> success, new PSRs + "RRATs"

- Originally PSR searches == burst searches. Realised PSRs very periodic -> can be better by N^{1/2}, where N=T_{obs}/P. PSR signal ~ Dirac comb -> FFTs
- Severyone -> "let's not do high DMs, nothing there"
- McLaughlin -> "let's find PSRs in SP searches again" -> success, new PSRs + "RRATs"

Lorimer -> "I'll search the SMC survey for bursts" -> didn't realise there were off-SMC pointings so went to DM 500 for all pointings -> good idea

- Typical PSR survey of SMC & surroundings
 - in Australia
 - observed at L-band (1.4 GHz)
 - BW of few 100 MHz
 - time-sampling of few kHz

- Typical PSR survey of SMC & surroundings
 - in Australia
 - observed at L-band (1.4 GHz)
 - BW of few 100 MHz
 - time-sampling of few kHz
- Detected an isolated burst of radio emission, lasting 5 milliseconds, at a very high dispersion measure

- Typical PSR survey of SMC & surroundings
 - in Australia
 - observed at L-band (1.4 GHz)
 - BW of few 100 MHz
 - time-sampling of few kHz
- Detected an isolated burst of radio emission, lasting 5 milliseconds, at a very high dispersion measure

- Typical PSR survey of SMC & surroundings
 - in Australia
 - observed at L-band (1.4 GHz)
 - BW of few 100 MHz
 - time-sampling of few kHz
- Detected an isolated burst of radio emission, lasting 5 milliseconds, at a very high dispersion measure

- Typical PSR survey of SMC & surroundings
 - in Australia
 - observed at L-band (1.4 GHz)
 - BW of few 100 MHz
 - time-sampling of few kHz
- Detected an isolated burst of radio emission, lasting 5 milliseconds, at a very high dispersion measure

A bright millisecond radio burst of extragalactic origin

D. R. Lorimer,^{1,2*} M. Bailes,³ M. A. McLaughlin,^{1,2} D. J. Narkevic,¹ F. Crawford⁴

This prompted burst searches of archival data to high DMs & resulted in the HTRU Hilat survey being done.

This prompted burst searches of archival data to high DMs & resulted in the HTRU Hilat survey being done.

Perytons confused things ...

- This prompted burst searches of archival data to high DMs & resulted in the HTRU Hilat survey being done.
- Ø Perytons confused things ...
- Community divided best discovery of last few years or some kind of devilish terrestrial signal?

- This prompted burst searches of archival data to high DMs & resulted in the HTRU Hilat survey being done.
- Ø Perytons confused things ...
- Community divided best discovery of last few years or some kind of devilish terrestrial signal?
- JP: "I want to believe"

- This prompted burst searches of archival data to high DMs & resulted in the HTRU Hilat survey being done.
- Ø Perytons confused things ...
- Community divided best discovery of last few years or some kind of devilish terrestrial signal?
- JP: "I want to believe"
- ø EK: "In defence of Dunc"

I found a burst in PMPS
 (but think this is probably Galactic ...)

- I found a burst in PMPS
 (but think this is probably Galactic ...)
- Thornton found 4 in HTRU-S

- I found a burst in PMPS(but think this is probably Galactic ...)
- Thornton found 4 in HTRU-S
- Seven more discovered in HTRU-S since (cf Petroff talk, later in this session)

- I found a burst in PMPS(but think this is probably Galactic ...)
- Thornton found 4 in HTRU-S
- Seven more discovered in HTRU-S since (cf Petroff talk, later in this session)
- Arecibo found one too.

- I found a burst in PMPS(but think this is probably Galactic ...)
- Thornton found 4 in HTRU-S
- Seven more discovered in HTRU-S since (cf Petroff talk, later in this session)
- Arecibo found one too.
- More cropping up in archival searches too

- I found a burst in PMPS
 (but think this is p
- Thornton found 4
- Even more discover (cf Petroff talk, lat
- Arecibo found one
- More cropping up

- I found a burst in PMPS
 (but think this is p ¹⁵⁰⁰
- Thornton found 4
- Even more discover (cf Petroff talk, langed)
- Arecibo found one
- More cropping up

- I found a burst in PMPS (but think this is probab)
- Thornton found 4 in HTR
- Even more discovered in (cf Petroff talk, later in
- Arecibo found one too.
- More cropping up in arcl

- I found a burst in PMPS(but think this is
- Thornton found 4
- Seven more discove (cf Petroff talk, l
- Arecibo found one
- More cropping up

No high energy events coincident

No high energy events coincident

No GW info. (LB: LIGO wasn't on)

- No high energy events coincident
- No GW info. (LB: LIGO wasn't on)
- No neutrino info. (LB: in Southern sky & pre-ANTARES)

- No high energy events coincident
- No GW info. (LB: LIGO wasn't on)
- No neutrino info. (LB: in Southern sky & pre-ANTARES)
- No evident host galaxy

- No high energy events coincident
- No GW info. (LB: LIGO wasn't on)
- No neutrino info. (LB: in Southern sky & pre-ANTARES)
- No evident host galaxy

The Future

- These bursts are now pouring in ...
- Real time detection system now in place at PKS
 (2 `live' detections with ~minute lag) with alerts etc. Similar systems in place/in prep. at many other observatories.
- Looking at wider FOVs (LOFAR, MWA, Molonglo ...)
- Ø What are expectations for the future?

The rate is (ignoring redshift evolution): $R = (1/4\pi) \int_{V_1}^{V_2} \int_{L_1}^{L_2} \rho(L) dL dV FRBs/hour/sr$

->
$$R_{obs} = \int_{D1}^{D2} \int_{Lmin,em(D)}^{L2} \rho(L) dL D^2 dD = N_{obs}/(\Omega_{obs}T_{obs}(4/3)\pi D^3)$$

 \oslash Need to know 4 things: S_{min}(D), $\rho(L)$, W(D) & D-DM-z

- Smin(D) known for any given telescope/survey
- φ(L) -> standard candle -> easy
 -> !standard candle -> need more sources
- W(D) depends (mostly) on scattering in IGM
 -> tactic to examine 2 extremes
- Standard candles:

-> R_{obs} = const [max(D_2, D_{sc})³ - D_1^3] FRBs/hour/sr

Get const from known bursts, scale by FOV for predictions for your favourite telescope

- Rates between 1hr/FRB and 1000hr/FRB across the various current & TNG instruments
- For standard candles: R_{obs} = const [min(D₂,D_{sc})³ - D₁³] FRBs/hour/sr R_{obs} ~ const * [min(D₂,D_{sc})]³ where D_{sc} is the DM/distance where the standard candle's smeared out pulse falls below our S_{min}
- Important to make sure we don't stop searching at DM values below this point
 -> worth it searching up to DM of 6000!

Ideas/Questions for Discussions this week

- Are we 'detecting' the missing baryons (low ρ, high T)?? Can we 'weigh' them?
- Do we trust the Ioka D-DM-z relation? What are sensible MW/host DM contributions.
- There are no Parkes FRBs (out of ~10) with |b| < 15.
 Low-b selection effect(s)? T_{obs}, scintillation, scattering, something else? (cf. Johnston talk)
- What is the actual scattering & scintillation, experienced by FRBs?

Ideas/Questions for Discussions this week

- Published HTRU Rate(> 3 Jy*ms) is wrong & search algorithm !optimal (now correct+faster w. Heimdall)
- Substitution Usefulness of RM/polarisation/ measurements?
- What cosmology can we do? e.g. if we find more & observed ρ(z) leads to intrinsic ρ(z) & it's consistent with something (const., SFR, ...) then so what?
- WHAT ARE THEY?! Does the blitzar model, or any of the others, hold up? Or make predictions?

Thank You (questions, comments?)

@evanocathain

Extra Slides

@evanocathain

Comparison of Burst Search Codes

