

Coherent emission from CR air showers

Don Melrose

School of Physics University of Sydney

Ephemeral Universe workshop, Curtin University, 12 November 2013

Summary of Talk

- Observations of EASs
- ► Cerenkov, geomagnetic & geo-synchrotron emission
- Codes for coherent radio emission in EASs
- Radio emission in air
- Implications for astrophysics?

Observations of EASs

- ► EASs from CR primaries $E \gtrsim 10^{15} \text{ eV}$
- ${\it N}\sim 10^6$, $10^4\,{
 m m}^2$ at ${\it E}\sim 10^{15}\,{
 m eV}$; ${\it N}\sim 10^{11}$, $10^7\,{
 m m}^2$ at ${\it E}\sim 10^{20}\,{
 m eV}$
 - Detections of HECRs (e.g., Pierre Auger Observatory)
 - ▶ Cascade includes e^{\pm} pairs (plus μ^{\pm} , $\pi^{0,\pm}$, . . .)
 - e^{\pm} exceed phase speed of light in air $(E \gtrsim 20 \, \text{MeV})$
 - => emit Cerenkov light
 - Detectable only on cloudless, moonless nights

Askaryan effect

- Possibility of Cerenkov radio emission from EASs (Jelley 1958)
- ▶ Coherent if $\lambda \gg$ thickness of EAS (ℓ)
- Askaryan recognized $N_{\rm e^+} \neq N_{\rm e^-}$ (Askaryan 1962, 1964) allows coherent emission $\propto (N_{\rm e^-} N_{\rm e^+})^2$
- ► Effect confirmed observationally (Jelley et al. 1965)

Geomagnetic & geo-synchrotron emission

Early theory (Kahn & Lerche 1966)

- $N_e = 10^6$, $\ell = 1 \, \text{m}$, $w = 30 \, \text{m}$, $E_e = 100 \, \text{MeV}$
- ▶ Individual e^{\pm} lifetime 10^{-6} s, continuously replenished
- ► Emission mechanisms: Cerenkov, geomagnetic, geo-synchrotron, creation/annihilation, . . .

Geomagnetic emission

- ▶ Separation of e^+ and e^- by Earth's **B**
- => changing dipole moment => radiation

Geo-synchrotron emission

- ► Modified form of synchrotron emission due to Earth's **B**
 - $\tau \ll$ period of one gyration; breaks azimuthal symmetry
 - effect of refractive index of air
- Difficult to disentangle from geomagnetic emission

Codes for coherent radio emission in EASs

Monte Carlo simulation codes

- REAS1, AIRES, CoREAS, ZHAireS, ...
- ▶ Collection of individual charges: specified \mathbf{x}_0 , β , . . .
- ▶ Include all relevant accelerations in $\dot{\beta}$
- Sum electric and magnetic fields,

$$\mathbf{E} = \frac{\pm e}{4\pi\varepsilon_0} \left[\frac{\mathbf{n} - \boldsymbol{\beta}}{\gamma^2 (1 - \boldsymbol{\beta} \cdot \mathbf{n})^3 R^2} + \frac{\mathbf{n} \times [(\mathbf{n} - \boldsymbol{\beta}) \times \boldsymbol{\beta}]}{(1 - \boldsymbol{\beta} \cdot \mathbf{n})^3 Rc} \right]_{\text{ret}}, \quad \mathbf{B} = \frac{\mathbf{n} \times \mathbf{E}}{c},$$

 $\mathbf{n} = \mathbf{k}c/\omega$, over all particles

▶ Calculate Poynting vector, $\mathbf{E} \times \mathbf{B}/\mu_0$

Features of models

- ► Consistent with emission $\propto N^2$
- Geomagnetic/geo-synchrotron emission dominates

Radio emission in air

Cerenkov condition: $n\beta \cos \theta = 1$

- ► $n = 1 + 1/2\gamma_0^2$, $\beta = 1 1/2\gamma^2$, $\cos \theta = 1 \theta^2/2$ => $\theta^2 = \theta_c^2 - 1/\gamma^2$, $\theta_c^2 = 1/\gamma_0^2$
- ▶ Cerenkov emission: on the Cerenkov cone, $\theta = \theta_c$

Geo-synchrotron emission

- ▶ Occurs both inside $(\theta < \theta_c)$ & outside $(\theta > \theta_c)$
- Synchrotron emission suppressed in plasma (Razin effect) $n=1-\omega_p^2/\omega^2$, suppression $\omega<\omega_{\rm RT}=2\omega_p^2/3\omega_B\sin\theta$
- ▶ Synchrotron emission enhanced for n > 1; by how much?

Conventional model for synchrotron emission

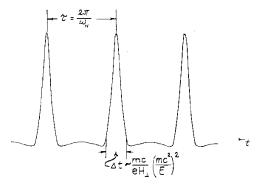


Fig. 4, Ginzburg & Syrovatskii 1965, ARAA

- One pulse seen by observer each gyration pulse => frequency spectrum
- Emission confined to $(\theta \alpha)^2 \leq 1/\gamma^2$
- ▶ n > 1 = Cerenkov cone $(\theta \alpha)^2 = \theta_c^2 \gg 1/\gamma^2$
- ▶ Broadens & adds structure to each pulse

Implications for astrophysics?

Emission by bunches

- ► Early astrophysics theories: coherence = emission by bunches
- ▶ Requires $\lambda \gg \ell$: valid for radio emission in EASs
- 'Bunch' part of initial conditions:
 coherent emission is transitory phase
 analogous to superradiance in quantum optics
- Emission by bunches unobservable in astrophysics

Role of refractive index n > 1

- ▶ Few examples where n > 1 important in astrophysics possible exception: HECR passing through Moon
- Extension of synchrotron theory to n > 1 primarily of theoretical interest