

Exploring the variable radio sky with the MWA

Tara Murphy University of Sydney

13th November 2013

MWA

13th November 2013 1/21

The Murchison Widefield Array

Frequency range 80 - 300 MHz

Number of receptors 2048 dual polarization dipoles

Number of antenna tiles 128 Number of baselines 16256

Collecting area Approx. 2000 sq. meters

Field of view Approx. 15 - 50 deg. (200 - 2500 sq. deg.)

 Instantaneous bandwidth
 30.72 MHz

 Spectral resolution
 40 kHz

 Temporal resolution
 0.5 seconds

Polarization Full Stokes (I, Q, U, V)

Background MWA 13th November 2013 2/21

MWA 'slow transients' science goals

- ► Low mass stars and brown dwarfs

 Physical origin; incident rates; spectral characteristics
- ► Magnetars

 Flare properties; energetics; duty cycles of radio bright phases
- ➤ X-ray binaries
 Understanding the disc-jet connection; outburst statistics; burst luminosity function
- Extra-solar planets Independent radio detections?
- ► Gamma Ray Bursts
 Prompt emission; long term follow-up
- New discoveries

See Bowman et al. 2013, PASA, 30, 31

Background MWA 13th November 2013 3/21

A hot Jupiter with the MWA?

- ▶ Jupiter is a strong source of low-frequency radiation
- Caused by cyclotron maser processes in magnetosphere
- Many extra-solar Jovian planets have magnetic fields
- ▶ Potential for *direct* radio detection of extra-solar planets

Credit: NASA, ESA

A hot Jupiter with the MWA?

- ▶ Models predict μ Jy mJy emission at MWA frequencies
- Results are model dependent
- MWA will help to constrain these models

Lazio et al. 2004, ApJ, 612, 511

A hot Jupiter with the MWA?

- ▶ Searches have been carried out with VLA, GMRT, UTR-2
- No detections to date
- Emission is likely to be sporadic and bursty

Background MWA 13th November 2013 6/21

Transient snapshot rates (c. 2007)

Bower et al. 2007, ApJ, 666, 346

Background MWA 13th November 2013 7

Transient snapshot rates (c. 2011)

Bell et al. 2011, MNRAS, 415, 2□ → ◀□ → ◀臺 → ◀臺 → ■ ◆ ♥ ९ ♥

Background MWA 13th November 2013 8/21

Transient snapshot rates (c. 2013)

Bell et al. 2013, MNRAS, accepted (yesterday!)

The LWDA all-sky survey

- ▶ 73.8 MHz all-sky survey, 106 hr of data with 2–5 min sampling
- ▶ No transients external to solar system at limit of 500 Jy

Lazio et al. 2010, AJ, 140, 995

Background MWA 13th November 2013 10/

VLA SWIRE Deep Field survey

- ► Archival survey of 6×325 MHz observations
- ▶ Observations days to months apart; peak sensitivity 0.2 mJy
- Multiple variables, one transient source

Jaeger et al. 2012, AJ, 143, 96, (3) (4) (5) (5) (5) (6)

MWA 32T Hydra-A field survey

Current results

MWA

MWA 32T Pictor-A field survey

Expedition	Epoch	Date	Frequency	N_{snap}	T_{tot} [min]
13	Epoch 1	22-28 Mar 2010	$154~\mathrm{MHz}$	11	55
			$185~\mathrm{MHz}$	11	55
14	Epoch 2	24-25 Sep 2010	$154~\mathrm{MHz}$	22	110
			$185~\mathrm{MHz}$	9	45
15	Epoch 3	29-30 Apr 2011	$154~\mathrm{MHz}$	44	153
	_	_	$185~\mathrm{MHz}$	_	_

Kudryavtseva et al. 2013, in prep

←□ > ←□ > ←필 > ←필 > ←필 > ←필 > ○

13th November 2013

MWA 128T transients surveys

Credit: David Kaplan

Proposal abstracts: http://mwatelescope.org/index.php/Astronomers

1. EOR fields commensal survey

- ▶ Pls: Kudryavtseva & Feng (G0005, 353 hours)
- ▶ Leverage 'Epoch of Reionisation' survey
 - ► EOR0: (0h, -27°)
 - ► EOR1: (4h, −30°)
 - ► EOR2: (11.3h, −10°)
- ▶ 30 flux measurements per night for 10⁴ sources above 100 mJy
- Science goals
 - Spectral index of brown dwarfs and low-mass stars
 - Low frequency flares of AGN
 - Behaviour of magnetars
 - ► Tidal disruption events?
 - Detection of extra-solar planets?

Current results MWA 13th November 2013 15/

2. Scintillation and turbulence

- ▶ Pls: Hancock, Kaplan & Miller-Jones (G0003, 21 hours)
- ▶ 24 weekly observations of a few fields
- Galactic fields with a range of latitudes
- Science goals:
 - Low frequency monitoring of AGN
 - Investigate RISS
 - Spatially resolved map of turbulence in the ISM

Credit: Paul Hancock

3. Monitoring the Galaxy

- ▶ Pls: Kaplan & Miller-Jones (G0004, 36 hours)
- ▶ Regular monitoring of the GP including the Galactic Centre
- Weekly and fortnightly observations; 5 minutes per field; over months
- Monitoring G2 as it orbits
 Sgr A*
- High cadence lightcurves of X-ray binary outbursts
- Serendipitous Galactic sources

Cygnus X-3 outburst: 15 GHz and 150 MHz (Credit: Kaplan)

17/21

4. Longterm Radio Sky Monitor

- ▶ Pls: Bell, Murphy & Kaplan (G0001, 50 hours)
- Wide-field (20 000 sq deg) ∼ 7876 sq deg observed 5 times
- ▶ Long timescales (monthly observations)
- ▶ Sensitive (1 $\sigma = 10$ mJy)
- ▶ 10 hours observing in a night, 1 night per month, 6 months
- Science goals
 - AGN variability
 - Brown dwarfs, ultra cool dwarfs
 - Microquasars
- Variability catalogue on day–month timescales

18/21

Current results MWA 13th November 2013

Initial 128T transients results

(See RSM drift scan movie; Martin Bell)

(See GP sneak preview; David Kaplan)

Transient detection pipeline

Source 200201 MWA_232206-544535

RA 23:22:06.69 Dec -54:45:37.07 search <u>SIMBAD NED</u>
<u>Cross-match this source</u> with the imported survey catalogues. View <u>position plot</u>.

Quality source: None [set to True | False | Remove]

Future challenges

- Understanding confusion-limited surveys
- Characterising ionospheric fluctuations
- 3 Incorporating full polarisation information
- 4 Reducing errors in source finding
- **5** Considering variability across full spectral range
- 6 Running imaging and transient detection in real time

