

Coherent emission in astrophysical plasmas

Don Melrose

School of Physics University of Sydney

Ephemeral Universe workshop, Curtin University, 12 November 2013

Introductory remarks

Low-frequency radio astronomy

- ▶ New era of low-frequency radio astronomy: LOFAR, MWA, ...
- Earlier era (in Australia): 1945 to circa 1980
- Nonthermal emission at higher frequencies: incoherent synchrotron radiation
- Bright bursty emission at lower frequencies: 'coherent' = non-incoherent
- Since \sim 1980 coherent emission \rightarrow space physics
- Exception: radio emission from pulsars
- Many unsolved problems remain

Sources of 'coherent' emission

Four established examples of coherent emission

- Plasma emission, notably solar radio bursts
- Electron cyclotron maser emission (ECME): planets (DAM & AKR) & stars (Sun, flare stars, ...)
- Pulsar radio emission
- Radio emission by cosmic ray showers in air

Coherent emission mechanism

- Solar radio bursts: growth of Langmuir waves due to 'bump-in-tail' electrons distribution
- ECME: driven by anisotropic electron distribution
- Pulsar emission mechanism is unknown
- Extensive air showers (EASs)
 N particles radiating N² times power per particle

Type III solar radio bursts

Ruby Payne-Scott (1912–1981)

Making Waves The Story of Ruby Payne-Scott: Australian Pioneer Radio Astronomer W.M. Goss, Springer, 2013

- Co-discoverer (with Joe Pawsey) of solar type III bursts Pawsey, Payne-Scott & McCreadie, Nature, 157, 158 (1946)
- Payne-Scott called them 'unpolarized' (fast-drift) bursts
- Provided interpretation: exciting agency emitting at fp
- Estimated speed: $\approx 0.2 c$

Type I, II & III bursts (Wild 1950)

- Types I: storm bursts, 1–20 s, Δf = few MHz
- Types II: slow drift $\approx -0.25 \, \mathrm{MHz} \, \mathrm{s}^{-1}$
- Types III: fast drift $\approx -20 \, \mathrm{MHz} \, \mathrm{s}^{-1}$
- Fundamental (F) & second harmonic (H) emission identified Wild, Murray & Rowe, Nature 172, 533 (1953)

First Theory for Plasma Emission

Ginzburg & Zheleznyakov theory; highly innovative

Ginzburg & Zheleznyakov, (A Zh 1958); Sov. Astr. AJ 2, 653 (1959)

Multistage process: all stages updated by later authors Melrose, Aust. J. Phys. 23, 871 & 885 (1970); Zhelznyakov & Zaitsev, Sov. Ast. AJ 14, 47 & 250 (1970)

Maser instability in type III bursts

Evolution of bump-in-tail instability

Grognard, in McLean & Labrum (eds), Solar Radiophysics, CUP (1985)

- ► Langmuir waves with phase speed v_φ = v grow whenever ∂f(v)/∂v > 0 satisfied
- ► Homogeneous beam model: energy losses are catastrophic: beam stops in $\approx 100/f_p$
- ► Driver: faster e⁻s outpace slower e⁻s => ∂f(v)/∂v > 0 continuously redevelops

Confirmation of weak-beam model

Lin, Potter, Gurnett & Scarf, ApJ 251, 364 (1981)

Clumpy Langmuir waves in IPM

Where are the Langmuir waves?

- Spacecraft passing through type III source failed to identify Langmuir waves (over few years)
- Plasma emission without Langmuir waves? Lin, Potter, Gurnett & Scarf, ApJ 251, 364 (1981)
- Recognition that Langmuir waves are in isolated clumps

Coherent emission processes are extremely intermittent

- Instability operates near marginal stability
- Slow driver towards instability (faster e⁻s outpacing slower e⁻s in this case)
- Balanced by localized bursts of wave growth backreaction tends to relax unstable distribution
- Explanation for highly localized growth still debated likely associated with local inhomogeneities

Type I emission

Type I emission not understood

- What is exciting agency for bursts?
- ► Why F but no H?
- Does type I continuum have structure?
- How is continuum generated?

Type I–III boundary

- Type I burst & continuum at higher frequencies type III emission at lower frequencies
- What defines the boundary? Interface between closed and open B?
- Ongoing reconnection probably drives the storm but what drives ongoing reconnection?

Extreme inhomogeneities

Solar corona must be highly structured

- Directivity of type I bursts
- Ducting of type III bursts
- Depolarization of F emission

Scattering by inhomogeneities

► Snell's law
$$n \sin \theta = \text{const.} \ n \sim 10^{-2}$$
 at F source
=> $\theta \sim 10^{-2}$ for $n \to 1$
=> sources should be seen only at CMP

Monte Carlo models for scattering

=> apparent size and angular range both increase

WRONG: violates Poincaré invariant ('generalized étendue')

Directivity of type I

Bougeret & Steinberg, A&A, 61, 77 (1977)

Fibrous conona needed to explain Type I

- Reflection through large angles off 'fibers'
- Emission in low-density region surrounded by overdense fibers

Depolarization of F emission

Depolarization of type I

- Type I emission (only F, no H) is highly circularly polarized Payne-Scott, Aust. J. Sci. Res. A 2, 214 (1949); Payne-Scott & Little, *ibid* 4, 508 (1951)
- Polarization decreases systematically as storm approaches limb Zlobec, Sol. Phys., 43, 453 (1975); Wentzel, Zlobec & Messerotti, A&A, 159, 40 (1986)
- => increasing depolarization with increasing deflection angle

Depolarization of type III

- Type III never 100% polarized (F< 70%, H < 20%, o mode) Dulk, Suzuki & Sheridan, A&A, 130, 39 (1984)
- ► Theory => F emission should be 100% o-mode
- Depolarization due to reflection of sharp boundaries Melrose, ApJ 637, 1113 (2006)

Ducting of type III emission

Duncan, Sol. Phys. 63, 398 (1979)

Apparent sources are scatter images

- ▶ Height of apparent source ≫ actual source
- At given f, F & H sources roughly coincide F source at f always much higher than H source at 2f

Structures required for ducting

Field-aligned inhomogeneities

- Radio emission generated in underdense regions
- Reflected off walls of duct => strong ducting along B
- \blacktriangleright F emission ducted to beyond H layer => density ratio $\gtrsim 10$
- Depolarization => extremely sharp boundaries
- Summary: type III also requires fibrous corona

How could MWA help?

- Suppose apparent source $= 10 \times$ actual source
- => ducted radiation fills only $10^{-1} \times$ actual source
- Made up of small or large, thin or fat, long or short patches?
- Scale depends on details of ducts
- Can scale be identified by MWA?

Pulsar radio emission

Radio pulsars

- Discovered in 1967; over 2000 now known
- \blacktriangleright Neutron stars, mass pprox 1.4 M_{\odot}
- Rotational periods, $P \approx 10^{-3}$ –10 s
- Extremely good clocks, $\dot{P} \approx 10^{-15}$
- Super-strong magnetic fields, $B \approx 10^6 10^{12} \, {\rm T}$

Radio emission process (not known)

- ► Due to highly relativistic electrons (or positrons) in ground Landau state (p_⊥ = 0)
- Several suggested emission mechanisms
 - Curvature emission (CE)
 - Plasma-like emission (PE)
 - Anomalous-cyclotron emission (ACE)
 - Linear-acceleration maser (LAE)

The $P-\dot{P}$ diagram

X marks a pulsar with P, \dot{P} measured from X-rays as well as radio observatons. Pulsars have $\Phi > 10^{12}$ V. (Arons 2007)

Pulsar electrodynamics

Incompatible models

- Vacuum dipole model no plasma
- Corotating magnetosphere neglects inductive E
- Force-free models invert cause & effect

'Catch 22'

- Models not useful in predicting radio emission
- Need radio observations to constrain models
- Enormous body of data, but every phenomenological 'rule' has exceptions
- Do we ignore exceptions? or look for 'Rosetta stone'?

Wave dispersion in pulsar plasma

Pulsar plasma: $\omega - k$ plot

- Parallel L-O & A modes (solid)
- Oblique L-O & A modes (dashed)
- Light line (long dashed)
- (X-mode not shown)

Features of the four emission mechanisms

- ▶ PE & ACE require refractive index > 1 possible for L-O over small range of angles & range of frequencies above ≈ $f_p \langle \gamma \rangle^{1/2}$
- ▶ LAE also only generates L-O mode (*n* > 1 not needed)
- Only CE allows X-mode

Polarization of pulsar radio emission

Rich variety of polarization features

- General sweep of linear polarization rotating vector model?
- Jumps between orthogonal polarizations
- High circular polarization (sometimes) in single pulses low circular polarization in mean pulse profile

Simple theory => emission in O mode

- Observed polarization imposed as propagation effect
- Ducting model like type III bursts?
- Requires extreme cross-field inhomeogeneities

Polarization data has not helped identify emission mechanism

How can we make progress?

Widely accepted assumptions

- Pulsar magentosphere populated through pair creation
- All particles in 1D motion along field lines
- \blacktriangleright Emission beamed into forward cone $\sim 1/\gamma$
- Magnetic field approximated by $B \propto (PP)^{1/2}/r^3$ for $r \ll r_L$
- ► Emission confined to polar-cap field lines polar-cap angle $\theta_{\rm PC} \approx (r/L_L)^{1/2} \ll 1$
- ► Number density $\approx M(\varepsilon_0 ec)B/P$ multiplicity $M \gg 1$ needed to explain wind

Possible additional assumptions

- Only one emission mechanism for all pulsars
- Emission site at $r/r_L \approx 0.1-0.2 => r \propto P$ (probability of seeing emission $\approx r/r_L$)

Frequency range similar for all pulsars

- $\blacktriangleright\,$ Radio emission peaks at $\sim 100\,\text{MHz},$ extends to $\gtrsim 10\,\text{GHz}$
- Free parameters: Lorentz factor, γ , $\langle \gamma \rangle$, M

Problems with suggested emission mechanisms Curvature emission (CE)

- Frequency $pprox (c/R_c)\gamma^3$ is too low for plausible γ
- Frequency $\propto 1/P$ cannot work for all pulsars
- Maser emission requires exceptional conditions
- 'Coherent' CE often assumed without justification

Plasma-like emission (PE)

- Frequency $\propto (\dot{P}P)^{1/4}/P^2$ times $(M^{1/2}\langle\gamma
 angle^{1/4})\gamma$
- Maser driven by ∂f(γ)/∂γ > 0 can apply only below peak in f(γ), γ ≈ ⟨γ⟩

Anomalous-cyclotron emission (ACE)

- Frequency $\propto (\dot{P}P)/P^5$ times $\gamma^3/(M\langle\gamma
 angle^{1/2})$
- Maser driven by 1D anisotropy

Linear acceleration emission (LAE) (Melrose 1978)

- Frequency determined by maximum growth rate
- Maser driven by driven by $\partial f(\gamma)/\partial \gamma > 0$

No mechanism is obviously preferred

Fine structures in coherent emission

Fine structures identified as specific phenomena

- ► S bursts in DAM, giant bursts in pulsars, ...
- narrow $\Delta \omega$, short Δt , exceptionally high T_B
- Is maser theory consistent with fine structures?
- Is it consistent to assume (growth rate) < (bandwidth of growing waves = Δω)?</p>

Can fine structures arise as propagation effect?

- Inhomogeneities lead to scattering and diffraction
- Caustics can arise naturally as propagation effects
- Most fine structures may be due to caustics

Measuring coherence

Intensity interferometry

- \blacktriangleright Hanbury Brown-Twiss effect: radio concept \rightarrow optics
- Photon counting: correlations related to coherence
- Photon count rate \propto intensity I
- Consider statistical average $\langle I^N \rangle$, N = 1, 2, ...
- Ideal coherence $=>\langle I^N\rangle=\langle I\rangle^N$
- Random phases $= \langle I^N \rangle = N! \langle I \rangle^N$

Measurable quantities in radio astronomy

- Correlators give I; also Stokes parameters Q, U, V
- Set of measurable quantities (I^N)/(I)^N similar quantities involving I, Q, U, V
- What do learn by measuring $1 \le \langle I^2 \rangle / \langle I \rangle^2 \le 2?$

Summary & Conclusions

Renewed interest in low-frequency radio astronomy

- New telescopes with high time & space resolution (MWA)
- Renewed interest in solar radio bursts
- ▶ ECME from brown dwarfs, extra-terrestrial planets, ...

We still do not understand pulsar radio emission

- Pulsar electrodynamics requires a major rethink existing models are unhelpful and technically incorrect
- Radio emission mechanism should to related to pair creation
- Is there more than one radio emission mechanism?
- New ideas/approaches needed

Are fine structures distinct phenomena or are they caustics?

If giant bursts are caustics

why are they observed only in particular pulsars?

If they are not caustics, what are they?

Caustics

Scintillation of radio pulsars

Parabolic arcs

Parabola: frequency delay $\propto (\delta\theta)^2$, time delay $\propto (\delta\theta)$ Shape of prabola depends on distance to scattering screen Only single screen involved! (Walker *et al.* MNRAS 354, 43, 2004)

Jupiter's decametric radio bursts (DAM)

- DAM discovered at 22.2 MHz (Burke & Franklin 1955)
- Upper cutoff at 39.5 MHz
 - $= {\rm electron} \ {\rm cyclotron} \ {\rm frequency} \ {\rm near} \ {\rm N} \ {\rm pole}$
- Correlation with lo (Bigg 1962)
- Bizarre radiation pattern (Dulk 1967)

on thin surface $\approx 1^\circ$ of wide-angled cone

Willes 2002, JGR 107, 1061

Evidence for lo's influence

lo-arcs 950508/09 30 Frequency (MHz) Nançay 10-Wind 23 UT (hours)

Left: lo-controlled DAM forms arcs

Below: auroral UV

The Earth's auroral oval from space

Auroral kilometric radiation (AKR)

The Earth is a spectacular radio source

- AKR discovered as 'Earth noise' by spacecraft in 1960s
- Correlates with 'inverted V' auroral electrons
- ▶ Emission at local electron cyclotron frequency (< 500 kHz)

Coherent cyclotron emission

- Coherence DAM initially attributed to "electron bunches"
- ▶ *N* electrons radiate N^2 times the power per electron
- Electron cyclotron maser emission (ECME) developed in 1970s
- ECME applied to AKR (Melrose 1976; Wu & Lee 1979) compared with *in situ* data on electrons for AKR
- ► applied to solar spike bursts & to flare stars (Melrose & Dulk 1982)
- ECME widely accepted; opinions differ over details

ECME

$$\omega - s \Omega_e / \gamma - k_{\parallel} v_{\parallel} = 0, \qquad \Omega_e = e B / m$$

Resonance ellipse

- ► Resonant particles lie on an ellipse in $v_{\perp} v_{\parallel}$ space $v_{\perp} = \beta c \sin \alpha$, $v_{\parallel} = \beta c \cos \alpha$ in figure
- Instability driven by $\partial f / \partial p_{\perp} > 0$

Loss-cone driven ECME

- $\partial f / \partial p_{\perp} > 0$ in loss-cone, $\alpha = \alpha_c$
- ▶ Driver: forced precipitation, only $\alpha > \alpha_c$ reflected
- => emission on narrow surface of wide cone

Very low densities required

Doppler shift to $> \omega_x$ required for ECME

- x-mode exists at $\omega > \omega_x$
- reflected electrons => positive Doppler shift
- requires $\omega_p \ll \Omega_e$
- auroral cavity discovered, consistent with theory

Data on electron distribution

- Early data supported loss-cone model
- Later data suggested different driver