Ideas for galaxy photometry

Simon Driver ICRAR/UWA

What do we do in GAMA

- 300sq deg 21 band photometry
 - GALEX, SDSS, VST, UKIDSS, VISTA, WISE, HERSCHEL

- IOTA matched aperture photometry
- SIGMA automated bulge-disc decomp
- LAMBDAR panchromatic photometry

Data preparation: SWARPs

- To manage data across 6 distinct facilities we generate SWARPs
 - i.e., 80sq deg image of each GAMA region in each band (80Gbytes/image)
 - Typically stitching 10k-20k images per SWARP (simplifies boundary problems)
- Preparation:
 - Scale all frames to common zeropoint (30.0) [weeks]
 - Measuring PSF FWHM and convolve all frames to 2" [months]
- SWARP (Terapix) [days]
 - Background subtract and regrid to 0.339"
 - Native SWARPs at native seeing
 - Convoled SWARPs at 1" seeing (VST+VIKING)
 - Convolved SWARPs at 2" seeing (SDSS+UKIDSS)

aster SWARP imag

Original UKIDSS imag

Examples highlighting backgrounds

G09 GALEX NUV

G09 SDSS R

IOTA

- Use 2" seeing convolved SWARPS
- Use input cat provided by SDSS (GAMA input cat)
- Produce galaxy cutouts from SWARPs in 9 bands ugrizYJHK
- Run SExtractor on r-band
- Identify galaxy at centre of cutout
- Rerun SExtractor in dual aperture mode u-K
- Ensures u-K photom:
 - Identical aperture
 - Identical deblending
 - Identical seeing

Hill et al (2011)

Star-galaxy separation

Individual examples

IOTA (SDSS+UKIDSS v GAMA)

Wavelength

Issues

- Colour gradients (galaxies half size in near-IR)
- Extended UV discs (often 3x larger than in r)
- Sextractor apertures can be off.
- Deblending needs tailoring
 - cannot optimise for both bright and faint (hot and cold mode)

Default settings.

IOTA settings.

SIGMA

- Uses native SWARPs
- Use input list (defined by SDSS)
- Cut out region around galaxy in each band
- Detects stars from same original frame as target
- Model ~20 stars to get PSF at target location
- Cut out zoom region around galaxy
- Detect all objects
- Decided which objects to mask and model
- Run GALFIT3 using profile presets
- Assess profile and rerun of necessary
- Repeat in all 9 bands
- 20seconds per object (using single CPU)

Kelvin et al (2012)

SIGMA

Model Fit Parameters

Structural Investigation of Galaxies via Model Analysis

SExtractor PSFEx GALFIT3 Bertin+ 1996 Bertin 2011 Peng+ 2010

GAMA

Kelvin et al (2012)

S0a: G417433

M01: Single-Sérsic

S0a: G417433

M02: De Vaucouleurs bulge + exponential disk

Wednesday 17 April 2013

Lee Kelvin

University of Innsbruck

SOa: G417433

M03: Sérsic bulge + exponential disk

S0a: G417433

M04: Sérsic bulge + Sérsic disk

LAMBDAR

- Want a measurement in every band with error
- Need to use r-band prior across all wavelengths
- Data unresolved in some bands
- Convolved r-band aperture with PSF
- Share flux based on PSF convolved aperture
- Iterate using flux amplitudes

• MULTI-WAVELENGTH ANALYSIS

20band cutout tool for all 220k galaxies at: <u>http://ict.icrar.org/cutout/</u> Will be transferred to GAMA database at ESO next month

Example galaxies

Real size variations?

LAMBDAR

only as

good

as your

apertures

-0.245

-0.25

-0.255

-0.26

-0.265

-0.27

Dec/deg

365406

223.06 223.055 223.05 223.045 223.04 223.035 223.03

RA/deg

Comparison to Herschel Atlas data

Issues for SkyMapper

Is aim uvgriz or GALEX+SkyMapper+VHS+WISE?

- TAIPAN = WISE selection?
- WALLABY/EMU benefit from combined catalogue
- A lot more science from the broader colours
 - pixel IFUs
 - photo-z
 - Better star-gal separation

Just photometry or profiles too?

- Matched or independen photom, which band as master
- Profiles above some flux limit? (r<15), how many? ~100k

Recycle GAMA tools?

- IOTA
- SIGMA
- LAMBDAR

UKIDSS v VIKING

420k 2MASS stars

Pixel Mapping

• POGS (MEURER, THILKER, VINSEN)

Pixel mapping

• POGS (MEURER, THILKER, VINSEN)

Imaging survey facilities

Watch our for bad apertures

Use background noise to determine sky noise in aperture (errors) and limiting sensitivity for each band and compare to that predicted/listed for each facility

IOTA (SDSS+UKIDSS v GAMA)

OLD

