

ASKAP-EMU & Skymapper SYNERGY

CSIRO ASTRONOMY & SPACE SCIENCE www.csiro.au

Nick Seymour (CASS) – ANU – 8th April 2014

Image: CHIPASS

Motivation: why radio surveys

separate SFGs/AGN

Seymour et al. (2004)

Motivation: why radio surveys

separate SFGs/AGNobtain redshifts

Seymour et al. (2004, 2008)

Motivation: why radio surveys

Presentation title | Presenter name | Page 4

ATLAS Survey

• 7deg²

- ~15µJy/beam rms
- Widest 1.4GHz survey at this depth
- ECDFS and ELAIS S1
- Aim: trace build-up of galaxies and black holes across cosmic time
- Huge wealth of ancillary data:
 - Chandra/XMM/UV(GALEX)/optical/VIDEO/SERVS(Spitze r)/PEP+HerMES(Herschel)/radio
 - Spec-z's from literature (already compiled)

Australian Telescope Large Area Survey (ATLAS)

Data Release 3: Banfield et al. (2014), Franzen et al. (2014)

6df + NVSS

6df + NVSS

Optical counterparts to COSMOS VLA sources

The Australian SKA Pathfinder

- 36x 12m dishes located in WA
- Distributed over 6km
- Novel tri-axial design for antennas
- Each antenna equipped with a phased array feed
- 300MHz bandwidth in 700-1800MHz range
- 1MHz channels
- Full Stokes data taken
- Data processing automatic
- Data released to public after quality control
- ASKAP early science Q2 2015

Image: Alex Cheney

- Deep, all-sky radio continuum survey (3π)
- Frequency range 1130-1430 MHz
- 10uJy/beam rms
- 40 x better sensitivity than NVSS
- 5 x better resolution than NVSS
- Better sensitivity to extended structures than NVSS
- Will detect and image ~70 million galaxies at 1.4GHz
- All data to be processed in pipeline
- Images, catalogues, cross-IDs, to be placed in public domain
- Total integration time: ~1.5 years
- Commensal with Polarisation and HI surveys

EMU Science Goals

Galaxy Evolution

- SFGs to z=2-3, when & where did stars form?
- AGN to the EoR, build up of earliest black holes?

Cosmology

- Integrated Sachs-Wolfe
- Cosmological parameters
- Cosmic magnification

Galactic Astronomy

- Local Galaxies
 - Extended emission
 - Dwarf galaxies

Serendipity/Legacy

• New classes of objects

EMU Science Goals

Galaxy Evolution

- SFGs to z=2-3, when & where did stars form?
- AGN to the EoR, build up of earliest black holes?

Cosmology – Dark Energy

"Current error ellipse" is based on Amanullah et al., 2010, ApJ, 716, 712, plus Planck data

Optical XIDs

Beyond nearest neighbour:

• Likelihood Ratio: The ratio of the probability that two sources are associated to the probability that the same two sources are unrelated. (Sutherland and Saunders, 1992). Adapt for double radio sources.

Optical XIDs

Beyond nearest neighbour:

 Likelihood Ratio: The ratio of the probability that two sources are associated to the probability that the same two sources are unrelated. (Sutherland and Saunders, 1992). Adapt for double radio sources.

Other Skymapper uses

Radio Galaxy Zoo
 RGZ2 VLASS+Skymapper
 RGZ3 SKA1+Skymapper

MWA all sky follow-up
Low-z LF of low-nu population
High/moderate z, powerful AGN

Optical XIDs

Photo-z's of COSMOS VLA sources

EMU Value-added Catalogue

Philosophy

- To provide an enhanced data product to maximise the scientific return from the EMU survey
- Enhanced data products include cross-IDs at other wavelengths, estimates of redshift/class of source etc.

Table 1: Straw-man plan for EVACat releases

#	time of release	products included
1	ASKAP+9 months	first hundred(?) tiles, EMU Self-XID ^a , basic EMU POSSUM and WALLABY products ^b and XID with existing surveys at other wavelengths ^c
2	ASKAP+18 months	first 500(?) tiles, zEMU1 redshifts based on EVACat1, WTF1
3	ASKAP+30 months	all ~ 1000 tiles, $RGZ1^d$, $zEMU2$, $WTF2$ and XID with DES
4	$\rm ASKAP{+}42months$	all tiles, RGZ2, zEMU3, WTF3, and XID with data from non-commensurate
5	ASKAP+54 monts	final release: RGZ3, zEMU4, WTF4, and XID with eROSITA

^a EMU Self-XID is the identification of the probable multi-component sources by an algorithm based on work on ATLAS DR3

 b EMU may require products from POSSUM and WALLABY which are not part of the general release from those projects

^c these are likely to include current surveys: SUMMS, SDSS, WISE, Akari, 2MASS, DENIS and the VISTA surveys (VHS, VST-ATLAS, Viking); as well as surveys which will be complete around the end of 2015: PanSTARRS, Skymapper, SDSS-III

 d see EMU Memo#16

Conclusions

- EMU will be provide SFRs or jet powers for any southern source
- EMU will provide the best constraint to date on star formation history to z~1

How do Redshifts Help?

These results made the conservative assumption that no redshifts are available for EMU sources (Raccanelli et al. arXiv 1108.0930)

But even imperfect photo-z's make a big difference (*Camera et al, arXiv 1205.1048)

(e.g polarised sources have <z>=1.8, unpolarised sources have <z>=1.1)

Implications of statistical redshifts

- 1) "tomographic cosmology"
 - EMU samples much larger volume of space than DES etc
- 2) Further reduce the error ellipses in all above tests

EMU Value-added Catalogue

Philosophy

- To provide an enhanced data product to maximise the scientific return from the EMU survey
- Enhanced data products include cross-IDs at other wavelengths, estimates of redshift/class of source etc.

