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What For?

Just need redshifts
— Have photometry but can’t wait for or won’t get spectra

Probe into new regime
— Beyond spectroscopic limits: higher-z or fainter
— E.g. deep fields, early Universe, lensing sources

All-sky / large samples
— Spectroscopy infeasible
— E.g. lensing tomography, LSS/BAO

Find rare follow-up candidates
— Spectra only for interesting sample
— E.g. QSOs, early galaxies, clusters etc.



Photo-Z “Quality”

@ Want z value for each object @ Want n(z) distribution
— Want low rms error and bias — For objects given fluxes, sizes,...
— Want to find & bin objects by z — Large enough sample, analysis

— Sample dominated by shot noise dominated by systematics

— Eg galaxy evolution studies — Eg IenSin.g, Corre|aﬁ0n funC’S,
cosmological parameters

» Hence need
— Map from flux observables to z
* Calibrated templates & priors
* Empirical training set

» Hence need

— Complete model representing z-
frequency given observables

— No particularly constraining data

— Constraining data . : ;
. unless high z resolution required
* Many filters, good spgctral
coverage and resolution e Trivial propagation of issues
 Quality drivers — Incomplete? Missing facts
— Bias and rms Az = AM/VNg, — Size? Poisson noise
— Wide A coverage widens z range — Unrepresenative? LSS imprint

and reduces outliers (as does , ,
non-SED data) e Algorithm affects quality



Strong Opinions...

Template photo-z’s are biased
and often wrong

— But as a deep/faint probe they’re
all we’ve got

Empirical training sets are
incomplete

— But they are highly precise on
the part they don’t miss

Machine-learning is a
compression algorithm

— But cost-effective solution for
commercial environment

— Off-the-shelf algorithms
— For overwhelming data volumes

Do proper statistics!
— If computer is fast enough

Complete the training sets!

— TACs turn down such proposals
(‘too expensive, no immediate
science’)

Careful error propagation

— TACs are right... sometimes ;-)

— What do you do with training
set-based photo-z’s?

Luminosity functions pointless
Photometric sample needs extra
information not available in
training sample, e.g. xy position



Training Sets Status

Random samples
— SDSS, GAMA, DEEP2a, VVDS

Larger colour-selected
samples
— DEEP2, WiggleZ, VIPERS, ...

Tackle cosmic variance
— More fields

— Spectra in fields with typical
photometric distribution

Explore incompleteness

— More of the same? Weak lines or
different redshifts?

— What are we missing from galaxy
populations?

R-Mag | __#fspec | incompleteness

<17 1,000,000 3-5% 7
<19.5 250,000 3-5%?
20 X,000 15%
22 10,000 25%
24 X,000 50%

 Next few years
— OzDES-deep
— 2dFLENS ?
— MOSFIRE @ Keck ?
— Make GAMA 99.x% complete?
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Query Sample vs. Training Sample
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Query Sample vs. Training Sample
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Zero-Smoothing KDE
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75,000 SDSS QSOs, MNRAS, Wolf 2009

Recover n(z) of any subsample within Poisson errors
Zero bias

Estimate of residual error risk
due to incompleteness and limited size
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