SkyMapper and EMP stars

Mike Bessell on behalf of the EMP team

Research School of Astronomy and Astrophysics

CAASTRO 2014

The discovery of the ancient star with no Fe lines.

SkyMapper 2.3m WiFeS Magellan MIKE

S. C. Keller, M. S. Bessell, A.
Frebel*, A. R. Casey, M. Asplund □,
H. R. Jacobson*, K. Lind, J. E.
Norris, D. Yong, A. Heger □, Z.
Magic, G. S. Da Costa, B. P.
Schmidt, & P. Tisserand

S. C. Keller¹, M. S. Bessell¹, A. Frebel², A. R. Casey², M. Asplund¹, H. R. Jacobson², K. Lind³, J. E. Norris¹, D. Yong¹, A. Heger⁴, Z. Magic^{1,5}, G. S. Da Costa¹, B. P. Schmidt¹ & P. Tisserand¹

The element abundance ratios of four low-mass stars with extremely low metallicities (abundances of elements heavier than helium) indicate that the gas out of which the stars formed was enriched in each case by at most a few-and potentially only one-low-energy supernova1-4. Such supernovae yield large quantities of light elements such as carbon but very little iron. The dominance of lowenergy supernovae seems surprising, because it had been expected that the first stars were extremely massive, and that they disintegrated in pair-instability explosions that would rapidly enrich galaxies in iron⁵. What has remained unclear is the yield of iron from the first supernovae, because hitherto no star has been unambiguously interpreted as encapsulating the yield of a single supernova. Here we report the optical spectrum of SMSS J031300.36-670839.3, which shows no evidence of iron (with an upper limit of 10^{-7.1} times solar abundance). Based on a comparison of its abundance pattern with those of models, we conclude that the star was seeded with material from a single supernova with an original mass about 60 times that of the Sun (and that the supernova left behind a black hole). Taken together with the four previously mentioned low-metallicity stars, we conclude that low-energy supernovae were common in the early Universe, and that such supernovae yielded light-element enrichment with insignificant iron. Reduced stellar feedback both chemically and mechanically from low-energy supernovae would have enabled first-generation stars to form over an extended period. We speculate that such stars may perhaps have had an important role in the epoch of cosmic reionization and the chemical evolution of early galaxies.

Whereas the solar spectrum contains many thousands of spectral lines due to iron and other elements, the high-resolution ($R \approx 28,000$) optical spectrum of SMSS 1031 300.36-670839.3 (hereafter SMSS 0313-6708) is remarkable for the complete absence of detectable iron lines. Figure 1 shows a portion of the spectrum that possesses a signal-to-noise ratio (S/N) of 100 per resolution element in the vicinity of one of the strongest iron lines (Fe1 at 385.9 nm wavelength). The non-detection of iron lines places an upper limit on the iron abundance of the star, $[Fe/H] \le -7.1$, at a 3σ confidence level. (Here $[A/B] = \log_{10}(N_A/N_B)_{max} \log_{10}(N_A/N_B)_{\odot}$, where N_A/N_B is the number ratio of atoms of elements A and B, and the subscript () refers to the solar value.) This upper limit is 30 times lower than the iron abundance in HE 1327-2326, which has [Fe/ H = -5.6 (ref. 2), and is the most iron-deficient star previously known. The paucity of absorption lines in the spectrum of SMSS 0313-6708 allows us to derive the abundance of only four chemical elements. The calcium abundance is determined to be [Ca/H] = -7.0. Given that existing studies have shown that [Ca/Fe] = +0.4 for the majority of extremely metal-poor stars*, the [Ca/H] value that we determine would be consistent with an extraordinary low iron abundance limit. We suggest below, however, that the Ca abundance in SMSS 0313-6708

Figure 1 | A comparison of the spectrum of SMSS 0313-6708 to that of other extremely metal-poor stars. a-c. Metal poor stars of similar temperature and surface gravity are chosen from the literature. The spectrum of SMSS 0313-6708 shows an absence of detectable Fei lines (a) and is dominated by molecular frattures of CH (c). Panel b shows the vicinity of shart should be one of the strongest iron lines in the ultraviolet/optical wavelength region. Overlaid are synthesized line profiles (1D LTE) for [Fe/H] = -7.5 (dotted line), -72 (solid line) and -6.5 (long dashed line).

Measarch School of Astronomy and Astrophysics, Mount Stronic Observatory, Cutter Road, Weston, Australian Oppitel Territory 25(1), Australian ¹Department of Physics, Measarchusetta Institute of Technology and Aux/Institute for Astrophysics and Space Research, Cardinidge, Measarchusetta (52), USA, Pestitiane 4 Anneosomy, University of Cardinidge, Measarchusetta Institute of School of Methematika School (2014), Volumi 1996 (Volumi 1996), Volumi 1997 (Volumi 1997), Volumi 1997

27 FERRUARY 2014 | VOL 506 | NATURE | 463

SkyMapper Optimised for Stellar Astrophysics

We chose to base the SkyMapper passbands on those of the successful SDSS survey. But in 2006 large dielectric filters with uniform transmission could not be made at a price that we could afford, so we decided to look for a colored glass solution. In addition, we realized that we could improve the sensitivity of the UV and blue bands to stellar parameters by tweaking them and including an additional band v band.

To do this we separated the red edge of the u band and the blue edge of the g band putting more of u below the Balmer Jump and lowering the metal sensitivity of the g band.

We inserted a narrower v band over the region of the strongest metal lines increasing its discrimination at low metallicity.

We thus improved our ability to determine the three important stellar parameters (T, log(g), Z)

SkyMapper Filter Set

Normalised Throughput

SkyMapper Passbands ?

SkyMapper filters

SkyMapper filters are large 310 x 310 x 15 mm. Left, our 3 layer all-glass g filter. Right, H α filter coated on a single red glass substrate. In 2006 uniform interference filters could not be made that large. In 2014 Materion can now make them.

Fundamental SkyMapper standards

We initiated a DTT STIS application with Ralph Bohlin and others to obtain better than 1% spectro-photometry (250nm - 1020nm) for 14 stars, 6 northern, 8 southern, with precise Hipparcos Hp magnitudes (0.002mag). These stars observed from space have no RA, Dec, seasonal effects that can effect ground based systems. We will use the southern and equatorial stars as fundamental standards for SkyMapper. Bohlin's primary DA white dwarf HST standards can also be observed.

Target	RA	Dec	(J2000)	V	Hp	vrad	Te	logg	[Fe/H]	B-V
HD009051	01 28 4	6.4 -24	20 25.	3 8	3.93	9.079	-73	4841	1.97	-1.80	0.82
HD031128	04 52 0	9.9 -27	03 50.	9 9	9.13	9.243	105	5825	4.30	-1.50	0.50
HD074000	08 40 5	0.8 -16	20 42.	5 9	9.67	9.762	204	6166	4.19	-2.02	0.43
HD111980	12 53 1	5.1 -18	31 20.	8 0	3.38	8.463	144	5600	3.70	-1.20	0.55
HD160617	17 42 49	9.3 -40	19 15.	58	3.72	8.824	100	5920	3.60	-1.96	0.46
HD200654	21 06 34	4.7 -49	57 50.3	3 9	9.09	9.215	-48	5160	2.55	-2.82	0.58
HD185975	20 28 18	3.7 -87	28 19.9	9 8	3.11	8.239	-20	5780	Solar	like	0.69
GJ754.1A	19 20 34	.9 -07	40 00.0) 12	2.29	12.38		0800		DBQ5	0.04
GD71	05 52 27	7.6 +15	53 13.7	7 1:	3.03			32300		DA1	-0.25
GD153	12 57 02	2.3 +22	01 52	1:	3.34			38500		DA1	-0.29
BD+2 3375	17 39 45	5.8 +02	24 59		9.94						0.46

-0.290.46

Stellar Parameters

SkyMapper will determine temperature, gravity and metallicity for on the order of 100 million stars. This will be used to investigate the assembly and chemical enrichment history of the bulge, thin/thick disk and halo.

In particular, SkyMapper will isolate the most metal-poor stars for spectroscopic follow-up with AAOmega, WiFeS, FunnelWeb for eventual high resolution echelle spectroscopic analysis of the EMP (extremely metal poor) stars.

Many stars with metallicity between -3> [Fe/H] >-4.5 have already been found from follow-up spectroscopy of candidates selected from preliminary photometry of test images but the discovery of the exceptionally deficient SMSS 0313-6708 was a great surprise and boost for the SkyMapper team.

u v g and stellar spectra

Spectra of a [Fe/H]=-2.5 and 0.0 solar-type star with the u v g bands superimposed

Halo isochrones

Apart from hot turnoff stars, giants are more than 10 times brighter than dwarfs at the same temperature so more likely to be observed. Giants are easily distinguished by their much lower log g than dwarfs.

Extremely Metal-poor Stars in the Halo

-0.20

Dartmouth isochrones

-2.5 v-g is dependent on the 0.00 level of the strong metal -2.0 line blanketing in the violet 0.20 ✓ not perturbed too much v-g-3.6*ri by C-enhancement 0.40 v-g retains sensitivity 0.60 between -2 and -4. Should 0.0enable only stars below -3 0.80 to be followed-up spectroscopically. 1.00 0.00 0.20 0.40 0.60 0.80 1.00 6500K 6000K 5500K 4500K Te

5000K

g-i

Extremely Metal-poor Stars in the Halo

Good gravity separation in u-v / g-i plane

Good metallicity separation in v-g / g-i plane

Distribution of v-g colors

The stars with the most extreme v-g excess are chosen for spectroscopic follow-up. Many of these extreme colors are errors due to the poor SkyMapper images at the time. Ca H&K emission line stars and emission line galaxies also contaminate the sample. Circled object is SMSS J0313-6708 from Jan 2013.

WiFeS spectra of EMP stars

HE0107-5240 [Fe/H]= -5.3

CD -38 245 [Fe/H]= -4.1

SM0313-6708 [Fe/H]< -7.1

Note the region around the Call H&K lines and the CH G-band

Clearly extremely low [Ca/H] and high [C/H] can be seen in WiFeS spectra.

B3000 WiFeS spectra

Fitting WiFeS spectra

High resolution MIKE spectrum

Research School of Astronomy and Astrophysics

CAASTRO 2014

Abundances and limits

Table 1 | Chemical abundances of SMSS 0313-6708

Element X	[X/H]1D, LTE	[X/H]<3D>
Lij	0.7*	0.7*
C (CH)	-2.4	-2.6†
N (NH)	<-3.5	<-3.9†
01	<-2.3	<-2.4†
Nai	<-5.5	<-5.5‡
Mgı	-4.3	-3.8‡
ALI	<-6.2	
Sil	<-4.3	
Сан	-7.2	-7.0‡
Scil	<-5.0	
Till	<-6.3	
VII	<-3.3	
Cri	<-6.3	
Mn	<-5.8	
Fei	<-7.3	<-7.1‡
Col	<-4.9	
Nit	<-6.4	
Cui	<-3.5	
Znı	<-3.4	
Srii	<-6.7	
Ball	<-6.1	
Euii	<-2.9	

Abundance ratios for SMSS 0313-6708 as derived from our Magellan/MIKE spectra. Typical (1 σ) observational uncertainties in the quoted abundances are 0.1 decades in metallicity, except in the case of C and N where 0.2 is appropriate.

*Lithium abundance is expressed as $A(\text{Li}) = \log_{10}(N(\text{Li}))/N(\text{H}) + 12$.

†Abundances based on <3D>, LTE calculations.

‡Abundances based on <3D>, NLTE calculations.

Comparison with other EMP stars

Abundance pattern and model

The solid line shows the abundances predicted for a $60M_{\odot}$ population III star of relatively low explosion energy (1.8×10^{51} erg) and low levels of internal mixing. The dashed line shows the expected yield from a $200M_{\odot}$ supernova (with a pair-instability explosion mechanism). Such a massive progenitor leads to a [Mg/Ca] ratio that is much lower than that observed.

Detection limits for nitrogen

Detection limits for Oxygen

CAASTRO 2014

Precis SMS0313-6708

- Normal Te and log g for star just above base of giant branch.
- Detection of Li I 6707A indicates that envelope/atmosphere had normal evolution.
- No Fe lines seen thus [Fe/H] < -7.1. Mg ([Mg/H]=-3.8) and C ([C/H]=-2.6 indicates star formed from material seeded by SN II ejecta.
- Galactic chemical evolution models show that stars with the iron abundance of SMSS 0313-6708 follow from a single supernova event.
- The observed abundance pattern does not support supernova progenitors outside the mass range 10–70 M☉.
- Ca abundance [Ca/H]=-7.2 important clue indicating it likely formed during the hydrogen burning phase of the 60 Mo primordial composition SN progenitor star.
- The extensive fallback of material into the black hole traps the centrally located iron and other heavy elements synthesized during the progenitor star's lifetime.

PRIMORDIAL STELLAR FEEDBACK AND THE ORIGIN OF HYPER-METAL-POOR STARS

TORGNY KARLSSON

NORDITA, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark; karlsson@nordita.dk Received 2005 December 19; accepted 2006 February 22; published 2006 March 16

ABSTRACT

The apparent absence of stars in the Milky Way halo with $-5 \leq [Fe/H] \leq -4$ suggests that the gas out of which the halo stars were born experienced a period of low or delayed star formation after the local universe was lit up by the first, metal-free generation of stars (Populaton III). Negative feedback due to the Population III stars could initially have prevented the pre-Galactic halo from cooling, which thereby delayed the collapse and inhibited further star formation. During this period, however, the nucleosynthesis products of the first supernovae (SNe) had time to mix with the halo gas. As a result, the initially primordial gas was already weakly enriched in heavy elements, in particular iron, at the time of formation of the Galactic halo. The very high, observed C/Fe ratios in the two recently discovered hyper-metal-poor stars HE 0107-5240 and HE 1327-2326 ([Fe/H] < -5), as well as the diversity of C/Fe ratios in the population III stars and local enrichment by subsequent generations of massive, rotating stars, for which the most massive ones end their lives as black hole-forming SNe, only ejecting their outer (carbon-rich) layers. The possible existence of populations of mega-metal-poor/iron-free stars ([Fe/H] < -6) is also discussed.

Amazing prediction by Torgny Karlsson 2006!

Fig 1 Torgny Karlsson 2006

Adopted SFR in the Galactic halo (black line) as given by the fraction of massive stars exploding as SNe. The shaded area indicates the period of low SFR.

Ż

Fig 2 Torgny Karlsson 2006

Predicted halo metallicity distribution. The dashed line denotes the distribution of stars neglecting the suppression of low-mass star formation in carbon-deficient gas. The solid line denotes the fraction of stars with carbon abundance $[C/H] \ge -3.5$. In both cases, a distinct population of stars appears in the range $-5.5 \lesssim$ [Fe/H] \lesssim -5, in agreement with observations (*symbols*).

Future work

- Analyse UV VLT spectrum to get O and N abundance and UV and red spectrum to determine better limits for some metals.
- Non-LTE abundance analysis to refine results, especially for OH and NH.
- Achieve good SkyMapper photometry to increase efficiency in identifying EMP stars from WiFeS or even go directly to echelle spectroscopy.
- Compare stellar parameters Te, log g and [Fe/H] determined from synthetic SkyMapper colors with those derived from spectrophotometry and fine analysis.

Fig 3 Torgny Karlsson 2006

Predicted distribution of stars in the [C/Fe]-[Fe/H] plane. In the top panel, the thick dashed line indicates a carbon abundance of [C/H] = -3.5. The shaded area below this limit should contain no low-mass stars (cf. Fig. 2). The symbols denote observations of stars in the Milky Way's halo. The circles are unevolved dwarf/subgiant stars (Barklem et al. 2005), the diamonds are stars on the lower red giant branch (Spite et al. 2005), the square is G77-61 (Plez & Cohen 2005), the upward facing triangle is CS 29498-43 (Aoki et al. 2004), the downward facing triangle is CS 22957-027 (Aoki et al. 2002), and, finally, the pentagon and hexagon are HE 0107-5240 (Christlieb et al. 2002) and HE 1327-2326 (Frebel et al. 2005), respectively. G77-61 and CS 22957-027 are known to be members of binary systems and may have been born with a lower surface carbon abundance as indicated by the arrows. The predicted group of mega-metal-poor stars is located inside the dashed circle. The bottom panel is the same as the upper panel, but with a carbon yield increased by a factor of 4 for stars in the mass range $30 \le m/M_{CO} \le 60$. Note that observed abundance ratios are not corrected for three-dimensional model atmosphere effects.

CAASTRO 2014

Blue Horizontal Branch Stars

CAASTRO 2014