

International Centre for Radio Astronomy Research

Estimation of the EoR Signal with an Extended MWA

Cathryn Trott DECRA Fellow - Curtin University

THE UNIVERSITY OF Western Australia

- The spherically-averaged (1D) power spectrum measures the sky power on a given spatial scale
 - Angular and line-of-sight considered together
 - Measures power (variance) of brightness temperature fluctuations of 21-cm HI emission line
 - Basic parameters to estimate: slope α , amplitude $\Delta^2(k_p)$

$$\ln\Delta^2(k) = \ln\Delta^2(k_p) + \alpha \ln\frac{k}{k_p},$$

The 2D power spectrum separates angular and LOS modes

 Crucial to discriminate foreground contaminating signals from cosmological signal

The second moment: 2D power spectral density

Line-of-sight wavenumber: spatial power

Angular wavenumber: spatial power _____

$$\langle \hat{T}_b(\mathbf{k})^* \hat{T}_b(\mathbf{k}') \rangle = (2\pi)^3 \delta(\mathbf{k} - \mathbf{k}') P_T(k_\perp, k_\parallel),$$

[K²] [m⁻³] [m³.K²]

ICRAR

Power spectra - examples

Optimal estimator - experiment

Estimate of 21-cm signal, in presence of foreground signals

- Uncertainty of P₂₁: slope, amplitude: σ_{α} , $\sigma_{\Delta 2(kp)}$
- foregrounds --> PSF determines classical confusion level --> how deeply foregrounds can be subtracted

Optimal estimator - experiment

Estimate of 21-cm signal, in presence of foreground signals

- Uncertainty of P₂₁: slope, amplitude: σ_{α} , $\sigma_{\Delta 2(kp)}$
- foregrounds --> PSF determines classical confusion level --> how deeply foregrounds can be subtracted

Statistical foreground bias - **PSF-dependent**

$$\hat{P}_{21} \simeq \left(\mathcal{H}^{\dagger}C^{-1}\mathcal{H}\right)^{-2} \left(\mathcal{H}^{\dagger}C^{-1}\vec{S}_{\nu}\vec{S}_{\nu}^{\dagger}C^{-1}\mathcal{H}\right) - \left(\mathcal{H}^{\dagger}C_{\mathrm{FG}}^{-1}\mathcal{H}\right)^{-1} \\ \sim \chi_{1}^{2} \left(\left(\mathcal{H}^{\dagger}C_{21}^{-1}\mathcal{H}\right)^{-1}, 2\left(\mathcal{H}^{\dagger}C^{-1}\mathcal{H}\right)^{-2}\right)$$

Variance of estimate - array layout and PSF dependent

Optimal estimator - experiment

Estimate of 21-cm signal, in presence of foreground signals

- Uncertainty of P₂₁: slope, amplitude: σ_{α} , $\sigma_{\Delta 2(kp)}$
- foregrounds --> PSF determines classical confusion level --> how deeply foregrounds can be subtracted

Statistical foreground bias - **PSF-dependent**

$$\hat{P}_{21} \simeq \left(\mathcal{H}^{\dagger}C^{-1}\mathcal{H}\right)^{-2} \left(\mathcal{H}^{\dagger}C^{-1}\vec{S}_{\nu}\vec{S}_{\nu}^{\dagger}C^{-1}\mathcal{H}\right) - \left(\mathcal{H}^{\dagger}C_{\mathrm{FG}}^{-1}\mathcal{H}\right)^{-1} \\ \sim \chi_{1}^{2} \left(\left(\mathcal{H}^{\dagger}C_{21}^{-1}\mathcal{H}\right)^{-1}, 2\left(\mathcal{H}^{\dagger}C^{-1}\mathcal{H}\right)^{-2}\right) \right)$$

Variance of estimate - array layout and PSF dependent

Generalized data covariance

$$\begin{split} C(\nu) &\equiv \langle S^{\dagger}(\nu)S(\nu) \rangle = C_{\rm FG}(\nu) + N(\nu) + C_{21}(\nu) \\ C(k) &\equiv \langle S^{\dagger}(k)S(k) \rangle = C_{\rm FG}(k) + N(k) + P_{21} \end{split}$$

Arrays considered

Array layout

- Pack core
- Non-redundant

σ=3m)

hexagons

6

Array layout

PSFs

Hexagonal

256TArms

256TCore

Synthesized beam

Current

2D signal-to-noise ratios

1000 hours, 3 hour track/day

Current array

Hexagonal

Potential for MWA+ to estimate parameters in 2D space

1D Power Spectra - 1000 hour experiment

1D Power Spectra - 1000 hour experiment

$$\Delta P = \left(\sum_{k} \left(\mathcal{H}^{\dagger} C^{-1} \mathcal{H}\right)^{2}\right)^{-1/2} \simeq \frac{1}{\sqrt{M_{k}}} (N(k) + C_{\mathrm{FG}}(k) + \boldsymbol{P}_{21})$$

	α/σα	$\Delta_{P}^{2}/\sigma_{\Delta P^{2}}$
Current	8.3	6.8
256TCore	26.9	15.6
256TArms	21.3	13.2
Smooth BP	8.7	7.I
Hexagonal	55.6	25.2
Hexagonal (perturbed)	51.9	22.5

Nominal sensitivity gain, but importance → is in *calibration*

Redundancy not crucial if sensitivity in right k-modes. Benefit in calibration of systematics

ID Power Spectrum from all data

ID Power Spectrum - exclude $k_{||} > k_{\perp}$

I D Power Spectrum - exclude $k_{||} > 2k_{\perp}$

ID Power Spectrum - exclude $k_{||} > 3k_{\perp}$

ID Power Spectrum - exclude $k_{||} > 4k_{\perp}$

I D Power Spectrum - exclude $k_{||}$ > 0.1 & $k_{||}$ > 3 k_{\perp}

SNRs: slope α

Conclusions

• Building sensitivity at the right angular scales is key

- Enforced coherence (redundancy) is useful, but not required for sensitivity (may be extremely useful for calibration and removing systematics) ---> rotation synthesis rotates quasiredundant baselines into redundancy; useful for physical tile placement
- A smooth bandpass does not impact sensitivity, but is more crucial for instrument calibration (systematics)
- Foreground leakage into EoR Window is still likely to impact, requiring long baselines to perform the best calibration
- MWA can perform detection experiment, and basic estimation. MWA+ can perform extended estimation (possibly 2D estimation)

CRAR

SNRs: slope α

SNRs: amplitude $\Delta^2(k_p)$

1D Power Spectra - no sample variance

MWA Expansion - October 15, 2014