

Pulsar science with (e)MWA

Ryan Shannon

Astronomy and Space Science www.csiro.au

Why pulsars?

• Plasma physics

- Pulsar magnetospheres are extreme places
- We don't understand how coherent emission works!
- Help us understand relativistic processes occurring in more distant places in the Universe (supernovae, gamma-ray bursts, fast-radio bursts)

Compact radio sources that probe the interstellar medium (ISM)

• The more we observe the ISM, the weirder it looks

Clocks in space

 General Relativity, Nuclear Equations of State, Gravitational Waves

Why low frequency?

- Steep spectral indices
 - But does the spectrum peak?
- Wider beams
 - More action in the magnetosphere
 - More fractional bandwidth
- Multi-(radio) wavelength complementarity
- ISM studies
 - Scale strongly with frequency

Fluxes of PPTA pulsars (Dai et al. in prep)

Figure 1. Flux density spectra for 24 MSPs. The fitted power-law spectra are indicated with red dashed lines

Outline

- Pulsar Emission and Variability
- Examining the interstellar medium
- Imaging pulsars and their fields
- 1
- What are the limitations to pulsars as clocks? What can low-frequency observations tell us about these limitations?
- Goal: present science through a series of example projects

Unifying pulsar emission

- Radio emission from neutron stars
 - Rotating radio transients: sporadic bright pulses
 - **Nulling:** occasional cessation of radio emission (1-1000s of pulses)
 - Intermittency: like nulling, but off-states last days to years
 - State-changing: like intermittency, but only see change in pulse shape
 - **Giant pulses:** extremely bright nano-second duration pulses
- Why the different observed emission?
 - Magnetosphere (Period, Period-derivative, magnetic axis)
 - Geometry (viewing angle)
 - Low frequency observations can help with both of these things.
- Find pulsars exhibiting multiple modes of emission at the same time

Example: PSR J0901-4624

- An apparently normal pulsar
- RRAT-like mode occurs simultaneously with normal emission mode
 - Pulse widths
 - Power-law statistics?
- RRAT mode has different polarisation state
 - Different part of magnetosphere

RRAT (McLaughlin et al. 2006)

Proposal: What is the bandwidth of pulsar emission?

- Over what range of frequencies (altitudes) is pulsar emission correlated?
- Survey 20 bright pulsars that are representative of the pulsar population
- Example MWA + Parkes
 - 150 MHz, 700-760 MHz, 2.5-3.5 GHz
 - Best and brightest pulsars
 - Measure polarisation of individual pulses
- Extension: monitoring programme
 - How do single pulse properties change with time?

Pulse profile evolution

- Tomography of pulsar magnetosphere
 - Low-frequencies = higher altitude?
- Also important to understand profile evolution for precision timing
 - New algorithms for pulsar timing
- Example: observations of MSP J0437-4715 at 3100/1400/730 MHz with Parkes and 200 MHz with MWA (Bhat et al. 2014)

Need Higher time resolution

Integrated emission at low-frequency

- Question: What do southern pulsars look like at 100 MHz?
- Data: high-SNR profiles of a diverse sample of pulsars.
- Complement high quality high-frequency observations from Parkes
- Use continuum maps as finder chart for bright pulsars at 100 MHz
- Requirements:
 - High-fidelity polarimetry
 - 100 microsec time resolution may be sufficient for slow pulsars, insufficient for faster pulsars

Continuum searches for pulsars

- Ultimate goal: Find pulsar-black hole binary
- Polarisation
 - High degree of circular polarization: Stokes V
 - Look for effects of RM variation in multi-frequency synthesis images of stokes Q and U (point sources turn into doughnuts)
- Scintillation
 - Search for the closest pulsars (do you need a bright source to benefit from higher order statistics)
- Complementarity to single dish searches
 - Narrow phase-space for periodicity searches
 - Highly accelerated systems (Pulsar-Black Hole Binary)
 - Intermittent/bursty pulsars

Continuum observations of pulsars

- Off-pulse emission
 - Is emission confined to regions around magnetic axis?
 - Claims of off-pulse emission at low frequency
 - Inconsistent with limits on off-pulse emission from ATCA observations at 20cm (Ravi, Shannon, & Melatos, in prep.)
 - Requires: Gating visibilities
- Pulsar wind nebulae
 - Gating to get rid of pulsar variability
 - Confusion an issue
- Bright intermittent pulsars
 - Gating not required, but could be beneficial
 - Example: PSR J1107-5907

BETA observations of field of J1107-5907

Bright state ~ 0.5 Jy in continuum at 730 MHz

Continuum observations of pulsars

- Proposal 1: Continuum searches for pulsars (ongoing?)
 - Use existing/future all-sky surveys
 - Longer baselines to resolve out diffuse emission and reduce confusion
- Proposal 2: Known intermittent pulsars
 - Long-term baseline from current all-sky/transient surveys (ongoing?)
 - Targeted observations to bridge time-scales (12 hours per day)
- Proposal 3: Search for off-pulse emission/PWN from bright pulsars
 - Require gating of visibilities (decrease correlator cycle time, then average visibilities appropriately)

The Interstellar Medium

- Pulsars are effectively point sources
- Pulsars probe AU-scale structure in the ISM
- As pulsar-Earth baseline changes, sample different path through ISM
 - Earth's motion, binary motion, pulsar's space velocity
- Phenomena divided on time-scale that they occur on
 - Dispersion measure (DM) variations
 - Refractive Scintillation (flux variations/ refractive wander of pulsar position)
 - Diffractive Scintillation (intensity variations)

Pulsars + ISM at low frequencies

- Traditional model: Kolmogorov Turbulence
 - Turbulent cascade of density perturbations from large scales to small the scale
- The more we look, the more we see that this model
 - Long-living discrete structure
 - Anisotropic scattering

Pulsars + ISM at low frequencies

- Traditional model: Kolmogorov Turbulence
 - Turbulent cascade of density perturbations from large scales to small the scale
- The more we look, the more we see that this model
 - Long-living discrete structures
 - Track sources over ~ months of observation
 - Anisotropic scattering

Brisken et al. (2010)

Scintillation and arcs of PSR J0437-4715: 50cm Parkes Observations

You don't need 10⁵ scintles to see arcs

Observations conducted Saturday night, analysed Bill Coles

Characterising the ISM at low frequency

- Question: What is the structure of the local ISM?
- Flux variations of pulsars for refractive scintillation (monitoring project; perhaps even in continuum observations)
- Diffractive scintillation/dynamic spectra
 - Start with short observations known interesting sources (PSR B0834+06)
 - Select pulsars with diffractive structure matching frequency resolution of system

Flux variations of J0613-0200 Renee Spiewak

DM Variations and Precision Timing

- Arrival times of pulses from millisecond pulsars can be inferred to high precision.
 - Best TOAs ~ 10 ns uncertainties. Measure 10 metre differences in path length to kpc distant objects
- Can potentially detect gravitational waves with pulsar timings. Current limits are ruling out astrophysically relevant models (Shannon et al. 2013)
- Largest source of noise in residuals is associated with variations in the total electron content (DM variations)
- We correct for this by measuring pulse arrival times at multiple frequencies.
- Lower frequencies: stronger propagation effects

Can you correct for DM variations with low-frequency observations?

- Sampled volume of ISM ~ v^{-4.4}
- Turbulent ISM = "The Giant powerlaw on the sky"
 - Averaging over larger volumes causes random-walk away from LOS electron content

Cordes & Shannon (2010)
Cordes, Shannon & Stinebring (in prep)

Can you correct for DM variations with low-frequency observations?

- DM-induced delays at lowfrequency should be smoother than those at high frequencies
- Of course, we need to find this out!
 - Measure DM variations
 - Combine with multi-frequency observations at Parkes

Low-frequency DM monitoring

- Proposal: monitor dispersion measures of MSPs
 - Lowest DM pulsars in PPTA sample
 - Judicious choice of frequencies
- Systematic errors compounded by variations in pulse broadening.
- Need answer to this question before SKA-low

Shannon & Cordes (in prep.)

Requirements for Pulsar Observing

- High time-resolution modes
- Increased sensitivity
 - Collecting area, simultaneous processed bandwidth
- Coordinated multi-frequency observations
- High-fidelity polarisation
- Observing time/backend requirements
 - Large: Monitoring projects
 - Small: pulsar-emission studies/ snap-shot ISM studies
- Clock for timing observations

Conclusions

- Plenty of high-impact pulsar science ready to go with (e)MWA
 - Higher time resolution required to enable most but not all of this science
- Study the pulsar emission mechanism
- Study the ISM
- Tests for precision timing in an "extreme environment"
 - 10 ns TOA variations at 20cm are > 100 μs at 2 metres.
- Path towards the low-frequency SKA
 - Position Australian scientists to taking leading role in SKA-low pulsar science
- Thank you

Why the eMWA shouldn't observe pulsars

- Pulsars are dynamic
 - Show variations on every time scale we look at them
 - Huge strain on correlator; (tied array) beamformer; post-pr
- Pulsars are dispersed/scattered
 - ISM distorts emitted signal
 - Huge strain on correlator/backend to get frequency and time
- Pulsars involve complicated physics
 - Electrodynamics, Relativity, Condensed Matter, Nuclear Physics, Gravitational Waves

