

Workshop summary

Randall Wayth - ICRAR/Curtin University

High-level (Melanie and Steven)

Successes

- Defined by publication numbers and completion of largescale observing programs (EoR, GLEAM)
- Array stability, uptime, utilisation

Moving forward

- Partners to stay in collaboration or buy in. Details to be finalised by December meeting
- Participant interest may depend on what is being proposed. Configuration matters.

Funds:

- To be gathered from partners and LIEF
- Phase 1: approx \$3M

Off by 1 error?

Cost/schedule

Off by 1 error?

Cost/schedule

Fortran array indexing scheme suggested.

Current MWA capabilities

Tingay et al. 2013, PASA, 30, 7 (MWA system description paper)

• 128 tiles; MORE!

3 km maximum baseline; MORE!

 Configuration balanced between short baselines for EoR and longer Good

baselines for surveys/solar;

80 – 300 MHz frequency range; MORE!

30 MHz processed bandwidth. MORE!

Will systematics beat us?

EoR

- Foregrounds:

 point sources ✓
 extended sources ✓
 smooth galactic emission ✓ and polarisation ~

 Instrumental:

 RFI ✓
 coarse band edges ~
 cable reflections ~

 Algorithms:

 unknown at this time
- On paper, we have enough data to detect EoR
- Still many unknowns
- There are "features coming through the signal path that we'd rather see the back of."
- Known known systematics:
 - Coarse band edges, cable reflections
- Known unknowns: polarised foregrounds

EoR

- Desired:
 - More tiles
 - redundant design "particularly compelling"
 - 50 MHz -> x-ray heating signature

Utility of even longer baselines not quantified.

Excellent proof of concept for **hybrid** array design -> HERA

New software pipeline?

EoR

 1D power spectrum simplest and most likely option for first MWA power spectrum

1D Power Spectra - SNRs - FG bias removed

$$\Delta P = \left(\sum_k \left(\mathcal{H}^\dagger C^{-1}\mathcal{H}\right)^2\right)^{-1/2} \simeq \frac{1}{\sqrt{M_k}}(\boldsymbol{N}(k) + \boldsymbol{C}_{\mathrm{FG}}(k) + \boldsymbol{P}_{21})$$

	α/σ_{α}	$\Delta_{\rm p}^2/\sigma_{\Delta \rm p2}$	
Current	8.3	6.8	Nominal sensitivity gain, but importance is in calibration Redundancy not crucial if sensitivity in right k-modes. Benefit in calibration of systematics
256TCore	26.9	15.6	
256TArms	21.3	13.2	
Smooth BP	8.7	7.1	
Hexagonal	55.6	25.2	
Hexagonal (perturbed)	51.9	22.5	

EoR

But it is still hard, even in the best case

Foreground power bias

ID Power Spectrum - exclude $k_{||} > 0.1 \& k_{||} > 3k_{\perp}$

EoR

 "Niche" EoR experiments are possible & desirable (moon global signal)

- The optical astronomers are meeting us half way
 - We're entering the age of optical near IR IFU multi-object spectroscopy
 - Working up to reionisation from low z

Cosmic web

- New frontier
- "The only game in town with this image quality"
- "In box seat to make huge progress on the cosmic web"
- Faraday rotation from background AGN. (B field)
- 21cm emission from the WHIM (neutral gas)
- Fast radio bursts (ionised gas)
- Ron: "Transformational"

- > Polarisation (Rudnick & Brown 2008)
 - higher sensitivity due to greatly reduced confusion
 - fainter signals, complex foregrounds, depolarisation

increasing the baselines: improvement to ~0.5 mJy/arcmin²

- > Statistical detection (Brown et al. 2010, 2011)
 - stacking at peripheries of clusters
 - cross-correlation with tracers of large-scale structure

2MASS galaxy distribution vs 1.4 GHz radio emission (Brown 2011)

3C 31 and NGC 315: total intensity and diffuse polarisation (Rudnick & Brown 2008)

Array requirements very similar to EoR

Survey

- Long baselines! Goals:
 - beat confusion
 - Resolve components of complex sources
 - 12 km-> similar res to NVSS. Not going to happen in phase1
- New science: find fading and/or rotating radio lobes
- Exotic sources: find high redshift counterparts of GPS sources due to negative k-correction factor

Survey

- Supertile! (aka correlating individual dipoles)
- Looks good on paper
- Ron: What are the effects of packing tiles in close together? Has anyone looked at that?
 - We already know there is significant mutual coupling between bowties. OK for beamforming/PB modelling. Not good for correlation?

Survey

- Processing and storage requirements for 256 with long baselines gets formidable
- Need to get smarter about most aspects of processing
- Doing a limited chunk of sky (e.g. zenith drift) makes life easier

GLEAM-X: MWA-X Phase2

Pipelines

Phase 1:

Cotter 800 kSU

CASA 288 kSU

Phase 2:

WSClean & self-cal: 50,000+ kSU

Resulting data products:

- 16 PB raw visibilities (gpubox fits files)
- 10 PB calibrated visibilities
- 600 TB image products

6 TB Stokes I 30MHz snapshots (minimal image product)

(Neglecting RM synthesis, spectral line products)

Assuming we simply repeat GLEAM's observing strategy

Some comparisons...

Total national provision for 2015:

137,000 kSU

Total MWA Operations data in 1.5 yr: 2.5 PB

Current GLEAM archive storage capacity: **200 TB**

Thermal noise: **1.2** mJy Confusion noise: **0.1** mJy

Spectral lines

- 10 kHz OK for HI abs, Carbon RRLs
- 1 kHz needed for other lines
- Edges of coarse channels bad (and for EoR)

Slow transients/variables

- Various science programs
- Stokes V a way around confusion
- Imaging and calibration hard

Spinoff science: ionosphere (likewise polarisation data)

Only possible due to MWA's wide field of view

Fast transients & pulsars

- Higher time resolution (~5 microsec) desired
- More core tiles = more powerful pulsar instrument

Future MWA capabilities

Tingay et al. 2013, PASA, 30, 7 (MWA system description paper)

128 tiles; MORE!

3 km maximum baseline; MORE!

 Configuration balanced between short baselines for EoR and longer baselines for surveys/solar;

Important!

80 – 300 MHz frequency range;

MORE!

30 MHz processed bandwidth.

MORE!

Plus...

- Finer time resolution, pulsar beams
- Finer spectral resolution

But... don't stuff it up

- Current MWA snapshot images appear to be exquisitely balanced between classical and sidelobe confusion
- Longer baselines with poorer u,v coverage == sidelobe confusion dominant
- If so, MUCH harder imaging problem (ala LOFAR), snapshots will not be better

Figure 1. The standard deviation of the MWA synthesised beam vs radius for a 112s snapshot centred on 155 MHz. Shown are the synthesised beams for 1.28, 10.24 and 30.72 MHz multi-frequency synthesis images with robust=0.

Figure 3. Total combined confusion noise for a snapshot 155 MHz, robust 0 MWA synthesised beam with varying hypothetical primary beam sizes. Values of $\beta=-0.5$ and -0.7 are used to represent the 1.28, 10.24 and 30.72 MHz synthesised beam properties. q=8. The classical confusion for this case is 5 mJy.

MWA -- SKA-low linkage

- AAVS1 to add SKA-low station(s) in MWA infrastructure
- Intent is to integrate signal into MWA signal path, hence correlate
- AAVS1 mutually beneficial with MWA

New software pipeline?

New software pipeline!

- Right team of people, critical mass
- One location
- Real data
- Well defined goals
 - realistic
 - No shifting goalposts
 - Do no aim to solve everything at the start
 - Resist bells and whistles

people!

What you said...

"Box seat" "Transformational" ting the "The only game in town"

"Shirthron "The "The only game in town"

"Simply blows everybody else out of the water"