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Astronomy Changed!

 Always been data-driven
But we used to know 
the sources by heart!

 Today large collections







Tamás Budavári

Keeping Up?
 Processing pipeline
 Feature extraction

 O(n)

 What is difficult?
 O(n log n)
 O(n2), …

Worse w/ Moore’s law
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Sloan Digital Sky Survey

 Cosmic Genome Project 2001-2010

 Table w/ 500M rows, 400+ cols
 Database of 35TB 
 Software revolution in astro! 
 Astronomers learn SQL
 Can’t look at the data anymore
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Science is Interactive

Too much to be accurate?
By the time you do the calculations,
the answer might have changed…
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Science is Interactive
 Rethink the basic methods

 Chunks of data

 Improving answers 
over time

Too much to be accurate?
By the time you do the calculations,
the answer might have changed…
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Incremental is Natural

 Bayes’ rule
 All data

 After

 Same
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Streaming Analysis

 E.g., Mean
 Data set

 Data stream

 How
 Single pass over data

 Why
 Low memory
 Interactive 
 Extendable
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 Complex Analyses
 Catalogs
 Spectra
 Images

Streaming Analysis

 How
 Single pass over data

 Why
 Low memory
 Interactive 
 Extendable
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Principal Component Analysis
 Clear meaning & method

 Directions of largest variations
 Eigenproblem of covariances

 Issues
 Needs lots of memory
 Very sensitive to outliers
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Monitoring Convergence

T. B., V. Wild, et al. (2009)

 Visual feedback
 Automatic checks
 Sublinear time
 Robust statistics
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Galaxy Spectra
 High SNR eigenfunctions

 Sign of robustness

 Speedup on SDSS
 From 3 days on a large-

memory machine
 To 15 mins on desktop

TB, Wild+ (2008)
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Matthias Lee

Optimal Image Coaddition
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Multiple Exposures

◻ Each observation 
⬜ Low Signal-to-Noise
⬜ Blury
⬜ Variable Quality

SDSS FRAMES
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Traditional Solutions

◻ Lucky Imaging
⬜ Keep only the best/sharpest images
⬜ Discard majority of exposures

◻ Coadding
⬜ Higher Signal-to-Noise Ratio
⬜ Worst acceptable PSF
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Annis et al. (2011) 
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Our Goal

◻ Improved quality
⬜Best signal-to-noise ratio
⬜Sharper & deeper images
⬜Even higher resolution
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Computational Optics

Single Frame
◻ Correcting Hubble optics; Richardson-Lucy deconvolution 
◻ White (1994), Starck+ (1994), Fruchter+ (1997), Fish+ (1995)
◻ Degeneracies due to limited information

Multiple Frames
◻ Harmeling+ (2009, 2010) 
◻ More data for inference
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◻ Latent “true” image convolved with unknown 
point-spread functions

◻ Plus noise

◻ Simultaneous solution?

Simple Model for Exposures
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Blind Deconvolution

◻ We solve for the true image & all PSFs
⬜ Gaussian likelihood function yields 

quadratic minimization

⬜ Multiplicative updates
cf. Richardson-Lucy
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Multi-Frame Blind Deconvolution

◻ General iterative approach:
Enter a new Image
Initialize new PSF

Estimate the PSF
using Update formula

Update Image Model
using Update formula

and estimated PSF

Image Model
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Multi-Frame Blind Deconvolution

◻ General iterative approach:
Enter a new Image
Initialize new PSF

Estimate the PSF
using Update formula

Update Image Model
using Update formula

and estimated PSF

The devil is in the details!

Image Model
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Masking Pixels

◻ Ignore gaps as well as bad & saturated areas

◻ But we solve for missing parts, too!
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Robust Statistics

◻ Quadratic cost function is dominated by bad pixels
⬜ Bad convergence across images

◻ Robust ρ(r) instead of r2

⬜ Quadratic for small residuals
⬜ Limited where bad

◻ Simple weighting
⬜ Integrates with streaming
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Careful Updates

◻ Artifacts from nowhere
⬜ Large updates of small values

◻ Limit the influence of updates
⬜ Say, no more than 2x
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◻ Coadding
⬜ Brings out faint sources
⬜ But blurs the images

◻ We deconvolve
⬜ Sharper
⬜ Deeper 

Coadded & Reconstructed

Coadded Image
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◻ Coadding
⬜ Brings out faint sources
⬜ But blurs the images

◻ We deconvolve
⬜ Sharper
⬜ Deeper 

Coadded & Reconstructed

Deconvolved Image
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◻ Coadding
⬜ Brings out faint sources
⬜ But blurs the images

◻ We deconvolve
⬜ Sharper
⬜ Deeper 

Super Resolution
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PSFs
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Next Steps

◻ Works great on GPUs
⬜ 140 images (2k × 2k) under 5 mins
⬜ 140 images (4k × 4k) in 10 mins

◻ Pipeline for real surveys
◻ Fit for sky background
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Summary

 Streaming and randomized algorithms can help
 Reduce memory requirements of big analyses
 Provide the best solution within the given time
 Integrate with intuitive improvements

 Promising applications – ready for next-gen?

KEEP ASTRONOMY INTERACTIVE!
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