STREAMING ALGORITHMS ANALYSIS OF ASTRONOMY IMAGES & CATALOGS

Tamás Budavári / Johns Hopkins University

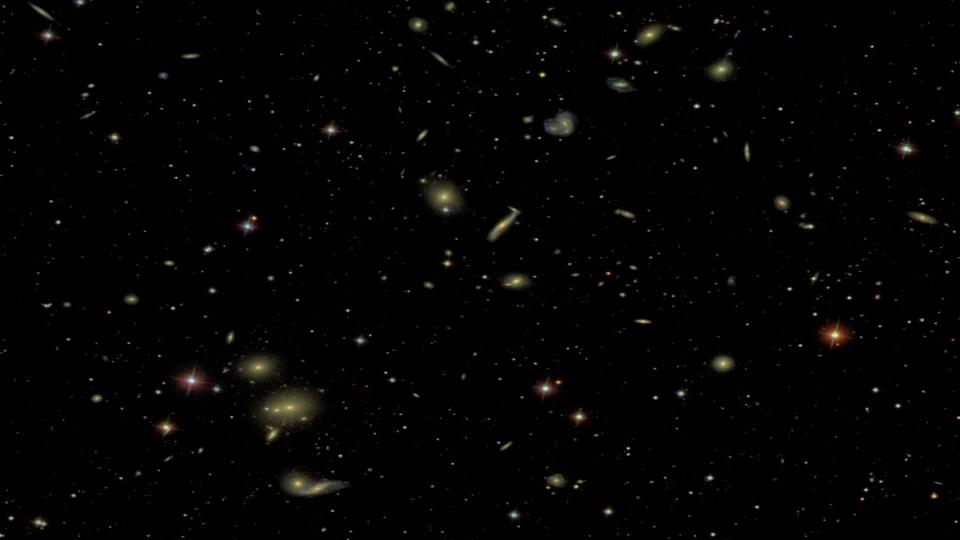
10/26/2015

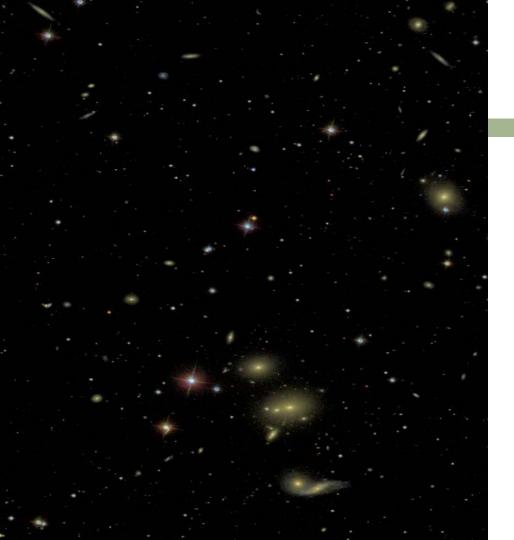
Astronomy Changed!

Always been data-driven
 But we used to know
 the sources by heart!

Today large collections







Keeping Up?

- Processing pipeline
 Feature extraction
 O(n)
- What is difficult?
 O(n log n)
 O(n²), ...

Worse w/ Moore's law

Sloan Digital Sky Survey

- Cosmic Genome Project 2001-2010
 Table w/ 500M rows, 400+ cols
 - Database of 35TB
 - Software revolution in astro!
 - Astronomers learn SQL
 - Can't look at the data anymore

Science is Interactive

Too much to be accurate?

By the time you do the calculations, the answer might have changed...

Science is Interactive

Rethink the basic methods
 Chunks of data

$$D = \left\{ D_1, \ D_2, \ D_3, \dots D_N \right\}$$

Improving answers over time

Too much to be accurate?

By the time you do the calculations, the answer might have changed...

Incremental is Natural

Bayes' rule $p(\theta|D_1D_2) = \frac{p(\theta) p(D_1D_2|\theta)}{p(D_1D_2)}$ All data $=rac{p(heta|D_1)\,p(m{D_2}|m{ heta},D_1)}{p(m{D_2}|D_1)}$ \square After D_1 $= \frac{p(\theta) p(D_1|\theta) p(\boldsymbol{D}_2|\theta, D_1)}{p(D_1) p(\boldsymbol{D}_2|D_1)}$ Same

Streaming Analysis

E.g., MeanData set

$$\boldsymbol{\mu} = \frac{1}{N} \sum_{n=1}^{N} \boldsymbol{x}_n$$

Data stream

$$\mu_n = \frac{n-1}{n}\mu_{n-1} + \frac{1}{n}x_n$$

- How
 - Single pass over data
- □ Why
 - Low memory
 - Interactive
 - Extendable

Streaming Analysis

Complex Analyses

- Catalogs
- Spectra
- Images

□ How

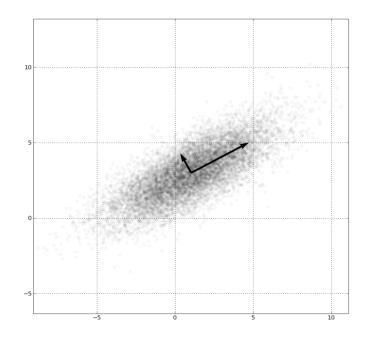
- Single pass over data
- □ Why
 - Low memory
 - Interactive
 - Extendable

Principal Component Analysis

Clear meaning & method
 Directions of largest variations
 Eigenproblem of covariances

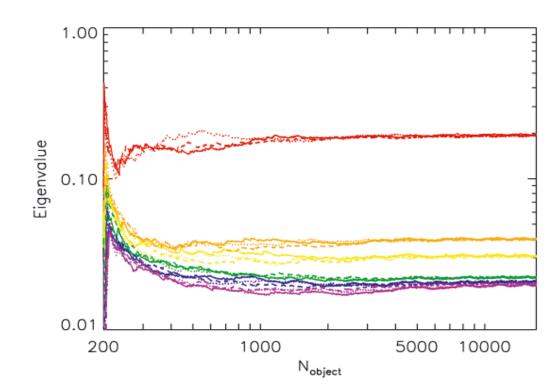
Issues

- Needs lots of memory
- Very sensitive to outliers



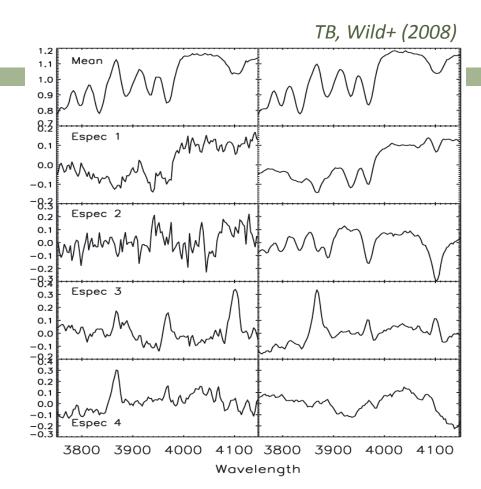
Monitoring Convergence

- Visual feedback
- Automatic checks
- Sublinear time
- Robust statistics



Galaxy Spectra

- High SNR eigenfunctions
 Sign of robustness
- Speedup on SDSS
 - From 3 days on a largememory machine
 - To 15 mins on desktop



<section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text>

Source

Conference Paper: Real time change point detection by incremental PCA in large scale sensor data

Dmitry Mishin · Kieran Brantner-Magee · Ferenc Czako · Alexander S Szalay

[Hide abstract]

ABSTRACT: The article describes our work with the deployment of a 600-piece temperature sensor network, data harvesting framework, and real time analysis system in a Data Center (hereinafter DC) at the Johns Hopkins University. Sensor data streams were processed by robust incremental PCA and K-means clustering algorithms to identify outlier and changepoint events. The output of the signal processing system allows us to better understand the temperature patterns of the DataCenter's inner space and make possible the online detection of unusual transient and changepoint events, thus preventing hardware breakdown, optimizing the temperature control efficiency, and monitoring hardware workloads.

2014 IEEE High Performance Extreme Computing Conference, Waltham, MA USA; 09/2014

Streaming Algorithms for Halo Finders

Zaoxing Liu^{* 1}, Nikita Ivkin^{* 1}, Lin F. Yang^{† 2}, Mark Neyrinck^{† 3}, Gerard Lemson^{† 3}, Alexander S. Szalay^{† 3}, Vladimir Braverman^{* 4}, Tamas Budavari[†], Randal Burns^{*}, Xin Wang^{† 3} *Department of Computer Science [†]Department of Physics & Astronomy Johns Hopkins University Baltimore, MD 21218, USA

Abstract—Cosmological N-body simulations are essential for studies of the large-scale distribution of matter and galaxies in the Universe. This analysis often involves finding clusters of particles and retrieving their properties. Detecting such "halos" among a very large set of particles is a computationally intensive problem, usually executed on the same super-computers that produced the simulations, requiring huge amounts of memory.

Recently, a new area of computer science emerged. This area, called streaming algorithms, provides new theoretical methods to compute data analytics in a scalable way using only a single pass over a data sets and logarithmic memory.

I. INTRODUCTION

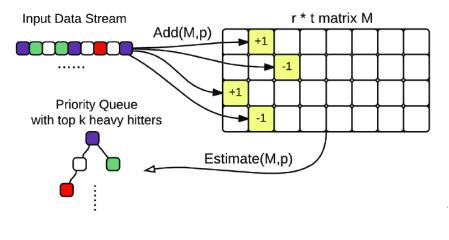
The goal of astrophysics is to explain the observed properties of the universe we live in. In cosmology in particular, one tries to understand how matter is distributed on the largest scales we can observe. In this effort, advanced computer simulations play an ever more important role. Simulations are currently the only way to accurately understand the nonlinear processes that produce cosmic structures such as galaxies and patterns of galaxies. Hence a large amount of effort is spent on running simulations modelling representa-

Streaming Algorithms for Halo Finders

Zaoxing Liu^{* 1}, Nikita Ivkin^{* 1}, Lin F. Yang^{† 2}, Mark Neyrinck^{† 3}, Gerard Lemson^{† 3}, Alexander S. Szalay^{† 3}, Vladimir Braverman^{* 4}, Tamas Budavari[†], Randal Burns^{*}, Xin Wang^{† 3} *Department of Computer Science [†]Department of Physics & Astronomy Johns Hopkins University Baltimore, MD 21218, USA

Abstract—Cosmological N-body simulations are essential for studies of the large-scale distribution of matter and galaxies in the Universe. This analysis often involves finding clusters of particles and retrieving their properties. Detecting such "halos" among a very large set of particles is a computationally intensive problem, usually executed on the same super-computers that produced the simulations, requiring huge amounts of memory.

Recently, a new area of computer science emerged. This area, called streaming algorithms, provides new theoretical methods to compute data analytics in a scalable way using only a single pass over a data sets and logarithmic memory.



The Count-Sketch Algorithm

Optimal Image Coaddition

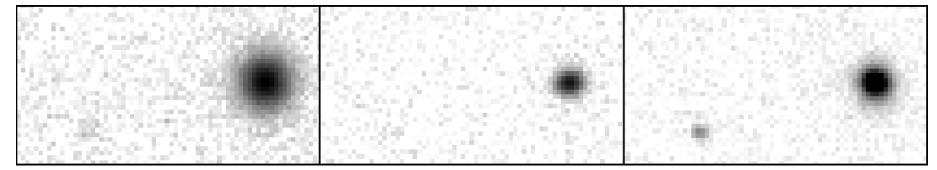
Matthias Lee

Multiple Exposures

Each observation

- Low Signal-to-Noise
- □ Blury
- Variable Quality

SDSS FRAMES



Traditional Solutions

- Lucky Imaging
 - □ Keep only the best/sharpest images
 - Discard majority of exposures

Coadding
 Higher Signal-to-Noise Ratio
 Worst acceptable PSF

Our Goal

Improved quality
 Best signal-to-noise ratio
 Sharper & deeper images
 Even higher resolution

Computational Optics

Single Frame

- Correcting Hubble optics; Richardson-Lucy deconvolution
- White (1994), Starck+ (1994), Fruchter+ (1997), Fish+ (1995)
- Degeneracies due to limited information

Multiple Frames

- □ Harmeling+ (2009, 2010)
- More data for inference

Simple Model for Exposures

- Latent "true" image convolved with unknown point-spread functions
- Plus noise

Simultaneous solution?

$$y_t = f_t * x + \epsilon_t$$

Blind Deconvolution

 We solve for the true image & all PSFs
 Gaussian likelihood function yields quadratic minimization

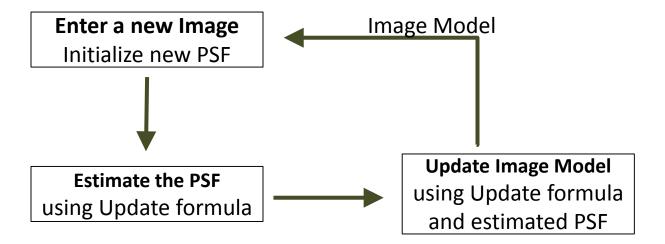
$$|y_t - Fx|^2$$

Multiplicative updates cf. Richardson-Lucy

$$x_{t+1} = x_t \odot \frac{F^T y_t}{F^T F x_t}$$

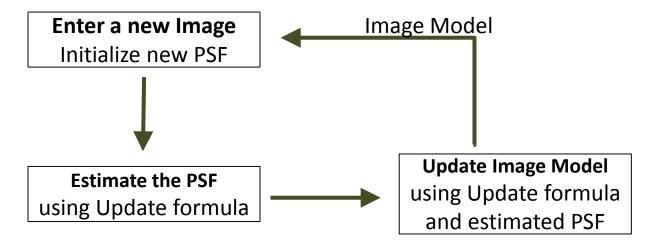
Multi-Frame Blind Deconvolution

General iterative approach:



Multi-Frame Blind Deconvolution

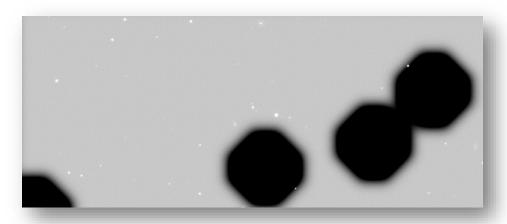
General iterative approach:



The devil is in the details!

Masking Pixels

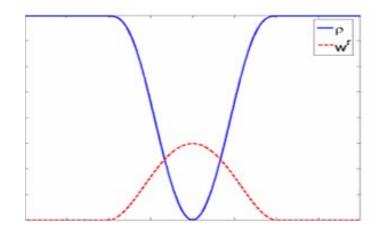
Ignore gaps as well as bad & saturated areas



But we solve for missing parts, too!

Robust Statistics

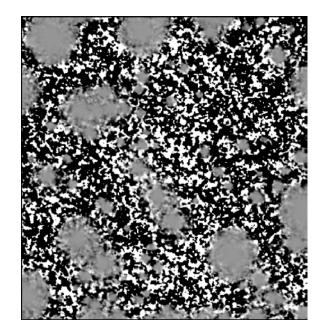
- Quadratic cost function is dominated by bad pixels
 Bad convergence across images
- Robust ρ(r) instead of r²
 Quadratic for small residuals
 Limited where bad
- Simple weighting
 Integrates with streaming



Careful Updates

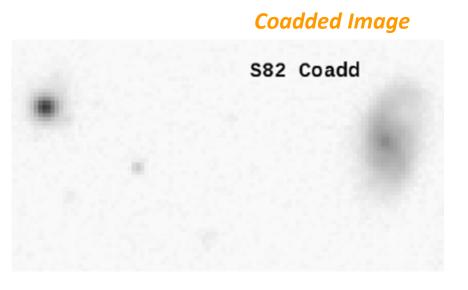
- Artifacts from nowhere
 Large updates of small values
- Limit the influence of updates
 Say, no more than 2x

$$u'_t = \max\left\{1/d, \, \min(d, \, u_t)\right\}$$



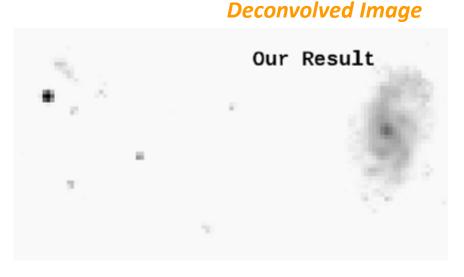
Coadded & Reconstructed

- Coadding
 - □ Brings out faint sources
 - □ But blurs the images
- We deconvolve
 - □ Sharper
 - Deeper

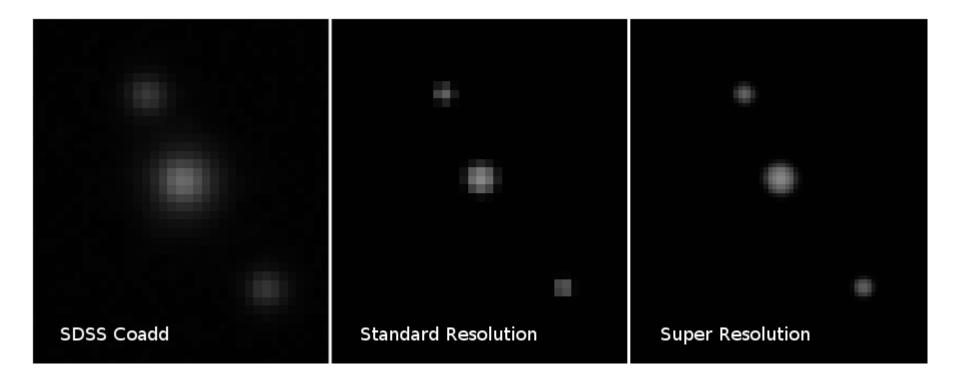


Coadded & Reconstructed

- Coadding
 - Brings out faint sources
 - □ But blurs the images
- We deconvolve
 - Sharper
 - Deeper



Super Resolution



PSFs

	٠	٠	٠	٠	٠	٠	٠
	٠				٠		
	٠		٠			٠	٠
٠	٠	٠				٠	٠
٠	٠	٠	٠	•		٠	٠
٠	٠	٠	٠	٠	٠	٠	
٠	٠						

Next Steps

Works great on GPUs
 140 images (2k × 2k) under 5 mins
 140 images (4k × 4k) in 10 mins

Pipeline for real surveysFit for sky background

Summary

- Streaming and randomized algorithms can help
 Reduce memory requirements of big analyses
 Provide the best solution within the given time
 - Integrate with intuitive improvements
- Promising applications ready for next-gen?

KEEP ASTRONOMY INTERACTIVE!