

Pulsar Timing Instrumentation with SKA1

Andrew Jameson

Swinburne / CAASTRO www.caastro.org

Swinburne; CSIRO / Swinburne; NASA / ESA

Australian Government

Australian Research Council

- > Due to free electrons in ISM
- > Frequency dependent delay
- > Highest frequencies arrive first
- Smears pulsed signal

- Incoherent
 - Faster
 - Residual smearing within channels
- Coherent
 - Removes all dispersive effects
 - Sharper profile features
 - Important for millisecond pulsars

- Slower

PSR B1937+21, 1500 MHz, GBT/GUPPI

Coherent Dedispersion

Year	Instrument	Bandwidth
1971	Sigma XDS 5	0.125
1987	Reticon	1.5
1998	S2 Recorder	16
1999	CPSR	20
2002	CPSR2	128
2007	APSR	1024
2010	CASPSR	400
2016	UWB	3500
2018	SKA1	16 x 2500

Year	Instrument	Bandwidth
1971	Sigma XDS 5	0.125
1987	Reticon	1.5
1998	S2 Recorder	16
1999	CPSR	20
2002	CPSR2	128
2007	APSR	1024
2010	CASPSR	400
2016	UWB	3500
2018	SKA1	16 x 2500

Pulsar Timing Sub-Element

- > Sub-element of CSP in SKA Mid
- > Receives input data streams from the Beam Former (CBF)
- Transmits folded pulsar integrations to Science Data Processor (SDP)
- Managed by Local Monitoring and Control (LMC)

- > 16 pulsars at a time
- > Up to 16 sub-arrays
- > 16 Beam formers
- > 1 stream per PST Beam Server

Beam Server DSP

- > Each PST beam server:
 - Receive tied-array beam from CBF
 - Coherent dedispersion
 - Form Stokes vectors
 - Optional RFI Mitigation
 - Fold into pulsar profile
 - Transmit to SDP ~ 1 Gb/s

Observing Parameters

- > SKA PST Bands
 - 1: 350 1050 MHz
 - 2: 950 1760 MHz
 - 5: 4600 13800 MHz
- > Dispersion Measure (DM) up to 3000
- Resolution
 - Integration: 1s Tobs
 - Frequency: 0.3125 10 MHz
 - Time: Min 0.24 μs
- > Full Stokes output

- Physical
 - Physical: 3 Racks
 - Power: 40 kW / rack
 - Heat: 7.5 kW / rack
- Input from beam former
 - 16 x 80 Gb/s
 - 10 MHz channels (oversampled)
- Output: PSRFITs integrations
- > Technical
 - Designed for 2016 technology
 - Rigorous systems engineering process
 - Costed to 5% error

Implementation

- > PST Beam Server:
 - 2 x Dual Port 40 Gb NICs
 - 2 x 8 core CPUs
 - 128 GB RAM
 - 4 x Nvidia Pascal GPUS
- Prototyping on Maxwell GPUs
- Field Testing at MeerKAT & Parkes

Performance Profile

- > I/O: OK (NIC + PCIe)
- Memory: OK (CPU + GPU)
- > Compute
 - Filterbank (FFT)
 - Freq dependent
- Limit memory bandwidth
- NVidia Pascal Features
 - Stacked GPU RAM
 - 16-bit Floating Point
- > Compute OK as well!

Design Features

- Low risk proven H/W & S/W
- Commercial Of The Shelf H/W
 - Economies of scale: HPC + GPUS
 - Easier upgrade path
- Good cost estimate
- Modular Software Architecture
 - Containers and Transformations
 - Updates to algorithms
 - Accommodate unplanned capabilities
- > Extensibility
 - Search mode
- > Ready for SKA2

- 352 Input, east/west parabolic interferometer
- > New instrument: UTMOST
- > FPGA frontend
- > Observing Modes
 - Individual Antenna
 - Correlator
 - Beam Former
 - Beam Tiler
- Backend: HPC, GPU, 10GbE & Infiniband

Adaptability to SKA1 Low

- Scientific Motivations
 - DM Monitoring
 - Scintilation Studies
- > Assume
 - Band: 50 350 MHz
 - Beam Former: 2048 channels
 - 6.83 µs time resolution
 - Max DM 3000
 - Identical PST hardware
- > Just need the beam former

- > PST implementation for SKA1 a safe bet
- > Built on proven software & hardware architectures
- > Extensible design
- Prototyped on MeerKAT and Parkes
- Deployable for SKA Low
- Transparent upgradability to SKA2