

Quantifying the feedback from radio Active Galactic Nuclei

Stas Shabala

Image: A. Deller

University of Tasmania

OzSKA - 09 Apr '15

SKA + pathfinders

Surveys + models will...

① Identify triggers of AGN activity

2 Test jet production mechanisms

3 Quantify the efficiency of AGN feedback

AGN feedback from radio jets

- Stops runaway cooling and SF in massive galaxies
- Intermittent
 - $\circ \quad Double double \ radio \ sources$
 - Heating cooling interplay

Quantifying feedback

For negative feedback from a single AGN,

 $E_{\text{feedback}} = \varepsilon_{\text{coupling}} E_{\text{AGN}}$

Quantifying feedback

Observational constraints:

- AGN fraction
- Radio luminosity
- Size
- Spectral index

[function of : mass, environment, AGN type...]

Quantifying feedback

Observational constraints:

- **AGN** fraction ٠
- Radio luminosity •
- Size ٠
- Spectral index •

[function of :

mass, environment, AGN type...

Physics:

- Mechanisms of AGN triggering •
 - How often _
 - For how long —
- Jet production mechanisms
 - How powerful
- Interaction with environment •
 - Observed AGN properties
 - Feedback

SKA + pathfinders

Stas Shabala - OzSKA - 09 Apr '15

Environments

Dynamical models

AGN size and luminosity evolution

Are very sensitive to environment $L_{\rm radio} \propto \rho^{7/6}$

NEW Gas masses from semi-analytic models

615 AGN (Shabala+ 2008)

- 0.03 < *z* < 0.1 (volume-limited)
- Stellar masses
- Cocoon sizes

10²⁶

10²⁵

10²⁴

10²²

10²¹

1

L_{1.4} / W Hz⁻¹

Radio luminosities

Active time [yrs]

size / kpc

Stas Shabala - OzSKA - 09 Apr '15

Selection effects

Questions...

- 1. How are the radio jets produced ?
 - test theoretical models of thin disks, ADAFs etc.
- 2. Do AGN properties depend on galaxy properties ?

3. Can AGN feedback produce observed galaxies ?

2. Do AGN properties depend on galaxy properties ?

Jet powers

- Large scatter
- Independent of host galaxy mass

2. Do AGN properties depend on galaxy properties ?

Jet powers

Theory

In heating – cooling balance ("maintenance mode" feedback), expect

$$\begin{array}{l} Q_{\rm jet} \sim \dot{M}_{\rm cool} \,/\, f_{\rm AGN} \\ \dot{M}_{\rm cool} \sim M_{\rm stars}^{1.5} & \text{from } L_{\rm X} - L_{\rm opt}, L_{\rm X} - T \text{ and } M - \sigma \text{ relations} \\ f_{\rm AGN} \sim M_{\rm stars}^{1.5} & \text{consistent with fuelling via hot-mode (Pope+ 2012, MNRAS, 419, 50)} \end{array}$$

Hence expect $Q_{\rm jet} \sim M_{\rm stars}^0$

Do AGN properties depend on galaxy properties ?

Jet powers

2.

Active lifetimes

Do AGN properties depend on galaxy properties ?

Jet powers

2.

Active lifetimes

Massive galaxies have

- jets similar in kinetic power to low-mass galaxies
- stay on for longer

They also have hot haloes that cool rapidly without AGN feedback...

Answers...

- 1. How are the radio jets produced ?
 - Accretion in radiatively inefficient flows (ADAFs)
- 2. Do AGN properties depend on galaxy properties ?
 - Massive galaxies preferentially host longer lived jets
- 3. Can AGN feedback produce the right galaxies ?

Semi-analytic AGN feedback

Stellar mass function (z = 0) 10⁻¹ Bernyk et al., in prep. 10⁻² Number Mpc⁻³ dex⁻¹ 10⁻³ 10⁻⁴ 10⁻⁵ observed ⊢ no feedback 10⁻⁶ 8.5 9 9.5 10 10.5 11 11.5 12 8 log M_{*} / M_{sun}

Feedback implementation

- Occasionally switch on AGN
 - how often
 - how powerful
 - for how long
 - are constrained by observations

Semi-analytic AGN feedback

Stellar mass function (z = 0)

Feedback implementation

- Occasionally switch on AGN
 - how often
 - how powerful
 - for how long
 - are constrained by observations

Feedback implementation

- Occasionally switch on AGN
 - how often
 - how powerful
 - for how long

are constrained by observations

Model must explain observations of both **AGN** and galaxies at z = 0

...and higher...

➔ constraints on feedback physics

Self-consistent AGN feedback

Feedback models must explain observations of both AGN and galaxies

across all redshifts

Strategy

- **AGN observations + models:** identify triggers, quantify AGN energetics
- Galaxy formation models: test whether AGN feedback can produce the right galaxies

Self-consistent AGN feedback

Feedback models must explain observations of both AGN and galaxies

across all redshifts

Strategy

- **AGN observations + models:** identify triggers, quantify AGN energetics
- Galaxy formation models: test whether AGN feedback can produce the right galaxies

ASKAP EMU : will probe same AGN populations at z ~ 0.8

Follow-up observations: ASKAP has 10 arcsec resolution (~70 kpc at z=0.8) -> need higher res for source sizes and energetics... SKA1-mid

Summary

1 Studying AGN populations

- Dynamical modeling of size and luminosity evolution of radio AGN
- <u>Quantify</u>: energetics, lifetimes, triggering rates
- <u>Test</u>: jet production, AGN feedback mechanisms
- At $z\sim 0$. SKA and pathfinders will take this beyond z=1.

(2) AGN feedback

- Semi-analytic models + intermittent radio AGN
- Using both AGN and galaxy observational constraints

Environment-dependent SEDs

Environment-dependent SEDs

Environment-dependent SEDs

Size evolution

Conservation of energy in cocoon

$$\left(\frac{1}{\gamma_c - 1}\right) \left(V_c \dot{p}_c + \gamma_c \dot{V}_c p_c\right) = Q_{\text{jet}}$$

Conservation of momentum in shell

$$\left(\frac{1}{\gamma_s - 1}\right) \left(V_s \dot{p}_s + \gamma_s \dot{V}_s p_s\right) = \frac{1}{2} \left(4\pi R_s\right)^2 \dot{R}_s^3$$

rate of KE flux

rate of KE flux into shell

Continuity of pressure

 $p_c = p_s$

Ram pressure balances cocoon pressure

 $p_c = p_s = \rho \dot{R}_s^2$

Assumptions:

- Strong shock
- Adiabatic expansion
- Energy driven (i.e. shock heated gas not radiative)

Size evolution

- Use geometry for volume of cocoon and shell
- Have 3 variables (p, R_c, R_s) and their derivatives (1st and 2nd)
- Assume power-law form for evolution of these with time $R_{\rm s} = At^{\alpha}, p = Bt^{\beta}$ etc.
- Solve equations to get time dependence of R_s

$$R_{\rm s} = \left(\frac{125}{154\pi} \frac{Q_{\rm jet}}{\rho}\right)^{1/5} t^{3/5}$$

Size evolution depends on jet power and density

Luminosity evolution

- Radio emission comes from synchrotronemitting cocoon electrons gyrating about magnetic field lines
- Luminosity is related to emissivity integrated over cocoon volume
- Depends on *B*-field, electron energy distribution, and volume

$$L_{v} = \left(\frac{2}{3}\right)\sigma_{\mathrm{T}} c u_{B} \frac{\gamma^{3}}{v} n(\gamma) V_{\mathrm{cocoon}}$$

Luminosity evolution

- Radio emission comes from synchrotronemitting cocoon electrons gyrating about magnetic field lines
- Luminosity is related to emissivity integrated over cocoon volume
- Depends on *B*-field, electron energy distribution, and volume

$$L_{v} = \left(\frac{2}{3}\right)\sigma_{\mathrm{T}}c u_{B} \frac{\gamma^{3}}{v} n(\gamma) V_{\mathrm{cocoon}}$$

Luminosity evolution

- Radio emission comes from synchrotronemitting cocoon electrons gyrating about magnetic field lines
- Luminosity is related to emissivity integrated over cocoon volume
- Depends on *B*-field, electron energy distribution, and volume

$$L_{v} = \left(\frac{2}{3}\right) \sigma_{\mathrm{T}} c u_{B} \frac{\gamma^{3}}{v} n(\gamma) V_{\mathrm{cocoon}}$$

Time evolution

Assumptions

- 1. Electrons lose energy
- 2. B-field changes
- 3. Cocoon expands

Adiabatic, synchrotron, IC (CMB) losses Equipartition between cocoon pressure and *B*-field energy density Use dynamical model

$$\frac{d\gamma}{dt} = -\alpha \frac{\gamma}{t} - \frac{4}{3} \frac{\sigma_{\rm T}}{m_e c} \gamma^2 (u_B + u_C)$$
$$u_B \approx p_C$$
$$V_{\rm cocoon} \propto t^{-3\alpha}$$

Radio source models

FR - II

FR - I

Strong shock **supersonic** limit

(e.g. Falle 1991, Kaiser & Alexander 1997)

- Ram-pressure driven expansion $p_{\rm lobe} \propto \dot{r}^2$
- Ignores external pressure

Pressure-limited expansion

- (e.g. Luo & Sadler 2010)
- "Coasting" down ext. pressure gradient $p_{\text{lobe}} pprox p_{ext}$
- Ignores ram pressure

Radio source models

FR - II

All sources initially supersonic FR-IIs Evolve into FR-Is as expansion slows

FR - I

Strong shock **supersonic** limit

(e.g. Falle 1991, Kaiser & Alexander 1997)

- Ram-pressure driven expansion $p_{\rm lobe} \propto \dot{r}^2$
- Ignores external pressure

Pressure-limited expansion

(e.g. Luo & Sadler 2010)

- "Coasting" down ext. pressure gradient $p_{\text{lobe}} pprox p_{ext}$
- Ignores ram pressure

NEW: Combined model, with FR-I / II as limiting cases

3. Which AGN dominate energetics ?

→ which radio sources dominate feedback energetics?

Convolve $Q_{iet} - L_{radio}$ relation with RLF

3. Which AGN dominate energetics ?

Powerful sources in **massive** galaxies do **more feedback**, despite being rare

Jet-driven radio bubbles

Stas Shabala - OzSKA - 09 Apr '15 Wagner & Bicknell 2011, ApJ, 728, 29