

International Centre for Radio Astronomy Research

Continuum Surveys with SKA1 Nick Seymour – OzSKA – 9th April 2015 (for the SKA Continuum WG)

THE UNIVERSITY OF WESTERN AUSTRALIA

International Centre for Radio Astronomy Research

Continuum Surveys with SKA1 Nick Seymour – OzSKA – 9th April 2015 (for the SKA Continuum WG)

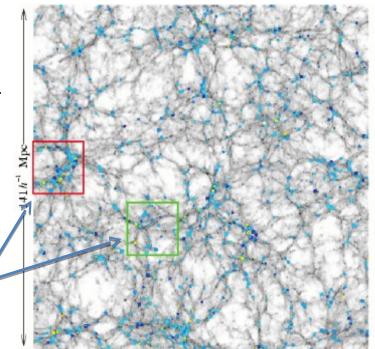
THE UNIVERSITY OF WESTERN AUSTRALIA

SKA Key Science Goals

Science Goal	SWG	Objective	SWG Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37 + 38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal & Thermal processes	1+2/8

Table 2. List of highest priority SKA1 science objectives, grouped by SWG, but otherwise in arbitrary order.

3



1deg

Evolution of galaxies

(in combination with HI + multi- λ informatio

- Star formation & BH accretion history
- Role of AGN feedback over cosmid times
- Origin of FIR-Radio correlation fields 10-
- AGN and SF physical processes
- diffuse non-thermal emission in clusters
- radio continuum emission from the cosmic we
- first galaxies, BHs & protoclusters
- Detailed study of ISM physics in nearby galax
- Strong lensing

GALFORM, Benson et al. 2000

z=2

Evolution of galaxies

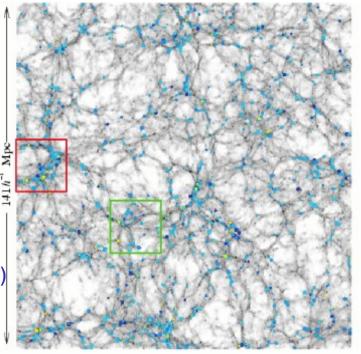
(in combination with HI + multi- λ informatio

- Star formation & BH accretion history
- Role of AGN feedback over cosmid times
- Origin of FIR-Radio correlation
- fields 10-- AGN and SF physical processes
- diffuse non-thermal emission in clusters
- radio continuum emission from the cosmic we
- first galaxies, BHs & protoclusters
- Detailed study of ISM physics in nearby galax
- Strong lensing

- -Baryonic Acoustic Oscillations
- -Integrated Sachs-Wolfe Effect
- -Magnification Bias
- -Weak lensing
- -HI Intensity Mapping

GALFORM, Benson et al. Shallower wide-area surveys >1/4 sky

Evolution of galaxies


(in combination with HI + multi- λ informatio

- Star formation & BH accretion history
- Role of AGN feedback over cosmid times
- Origin of FIR-Radio correlation
- fields 10-- AGN and SF physical processes
- diffuse non-thermal emission in clusters
- radio continuum emission from the cosmic we
- first galaxies, BHs & protoclusters
- Detailed study of ISM physics in nearby galax
- Strong lensing
- Cosmology (in combination with HI/redshift surveys) (Constrain dark energy and non-Gaussianity)
 - -Baryonic Acoustic Oscillations
 - -Integrated Sachs-Wolfe Effect
 - -Magnification Bias
 - -Weak lensing
 - -HI Intensity Mapping

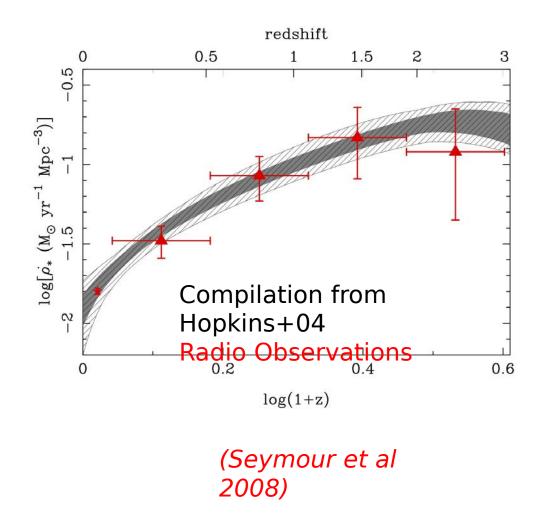
GALFORM, Benson et al. Shallower wide-area surveys

- Synergy with surveys in other wave-bands (LSST, Euclid, IWST, eROSITA)

z=2

SKA1: factor 30x over JVLA All Sky EMU. ATCA NVSS factor 5x over pathfinders VLA/JVLA SUMSS 10^{4} WSRT WOODAN 'FIRST Wide SUMSS [843 MHz] ATCA-CABB [1-3 GHz] pre-2010 All-Sky (2 yr) ^μ 3π JVLA [3 GHz] 10^{3} Apertif. Wide (1 yr) ^H 5000 deg² MeerKAT Deep (2000^h) ^H 30 deg² SKA,-SUR SPT Area (deg²) 10 SKA, -MID Ultra Deep (") ^{II} 1 deg² SDSS-82 Deet MIGHTEE-2 ATESP. (pre-rebaselining!) XXL-S / NEP. BOOTES ATLAS LBDS ELAIS SKA1-SUR Surveys: FLS JVLA-COSMOS. LH PDF COSMÓS NEP/ SKA Resolution: ~2-3 arcsec Ultra-Dee VVDS Pathfinders 1 SXDF Rms noise: 2, 1, 0.2 uJy/b GOODS-N CDFS LHEX MOFS JKAI BD S/SA13 SWIRE SKA1-MID *High-res* Surveys: 0.1 Resolution: ~0.6-3 arcsec JVLA-SWIRE ELAIS-N2 HDFN/ Rms noise: 3, 1.5, 0.3 uJy/b LH + 0.05 uJv/b 10^{-4} 0.001 0.01 0.1 10 1

Prandoni & Seymour

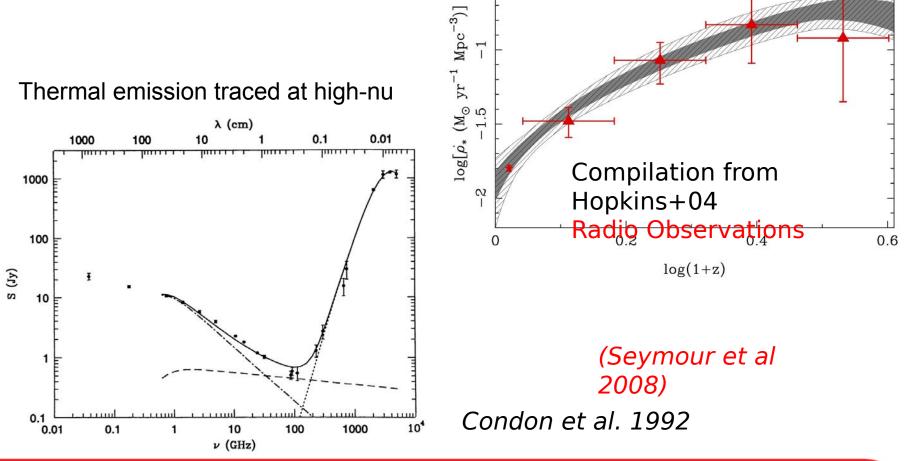

(mJy) $[5\sigma, 1.4 \text{ GHz}]$

S _{lim}

Star Formation vs Cosmic Time

Deep Fields Dominated by SFGs

8



Star Formation vs Cosmic Time

0

0.5

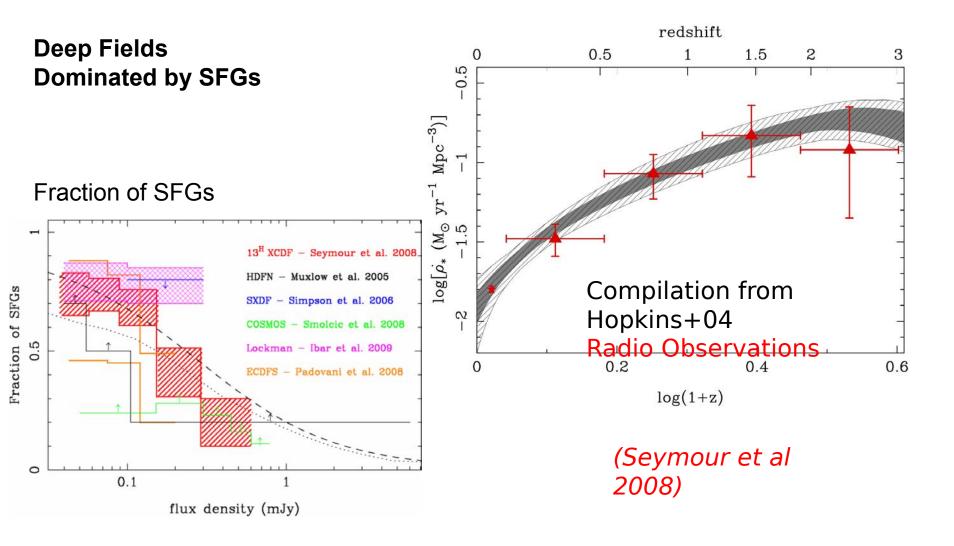
Deep Fields Dominated by SFGs

redshift

1

1.5

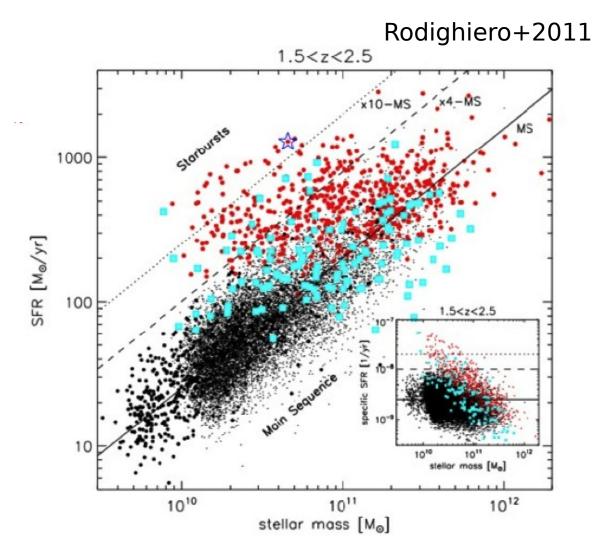
2


3

9

0.5

Star Formation vs Cosmic Time

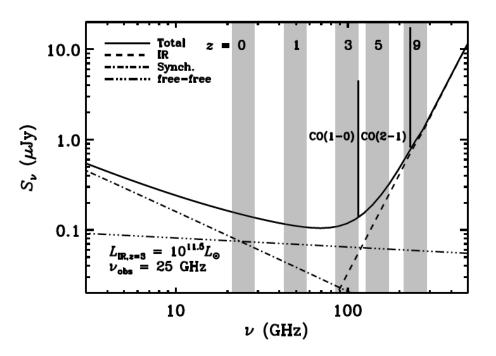


Star Formation vs Stellar Mass

Effect of Galaxy Mass

Requirement: sensitive to low SFR systems at high z _ nJy sensitivities

Ultra Deep: $SKA_1 \sim 10 M_{sun}/yr @ z < 2-3$ $1 M_{sun}/yr @ z \sim 1$ $SKA_2 \sim 10 M_{sun}/yr @ z \sim 6-7$ $1 M_{sun}/yr @ z \sim 3$



Detailed Astrophysics of SF

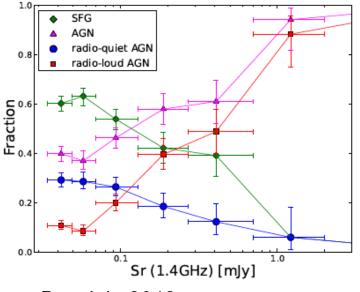
@ z>2 v_{obs}~10 GHz _□ v_{rest}>30 GHz

Thermal emission more accurate SFR

High resolution for resolved SFG studies

Requirement: sub-uJy sensitivity

@ sub-arcsec spatial resolution

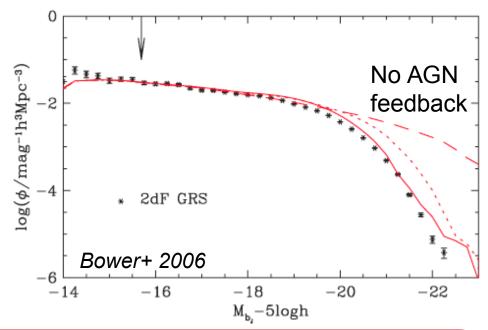

SKA1 , 0.1 arcsec resolution at ~10 GHz

100 M_{sun} /yr SFGs up to z~2 & 10 M_{sun} /yr SFGs up to z~0.5

SKA2 → extend frequency coverage to 30 GHz (synergy with ALMA for High-z molecular lines)

Black Hole Accretion History

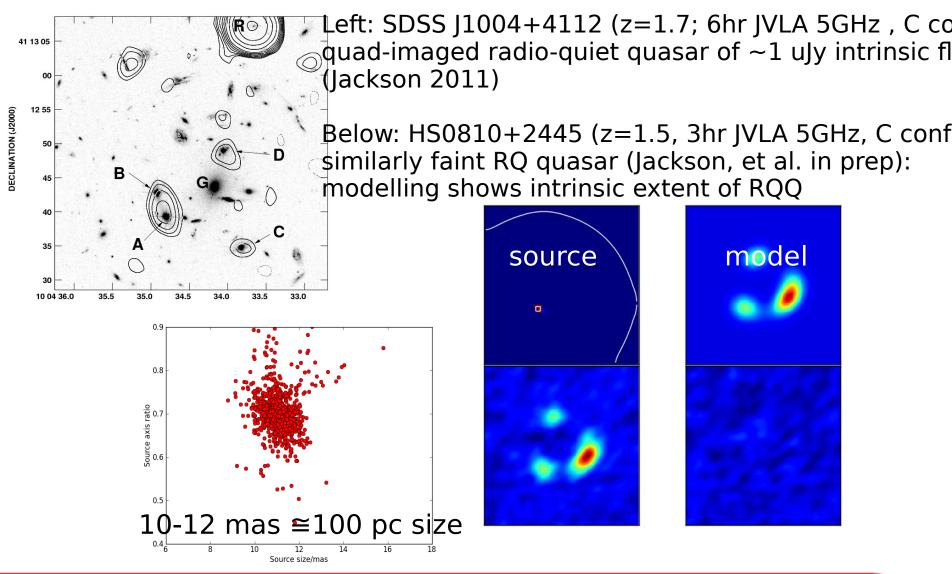
Bonzini+ 2013

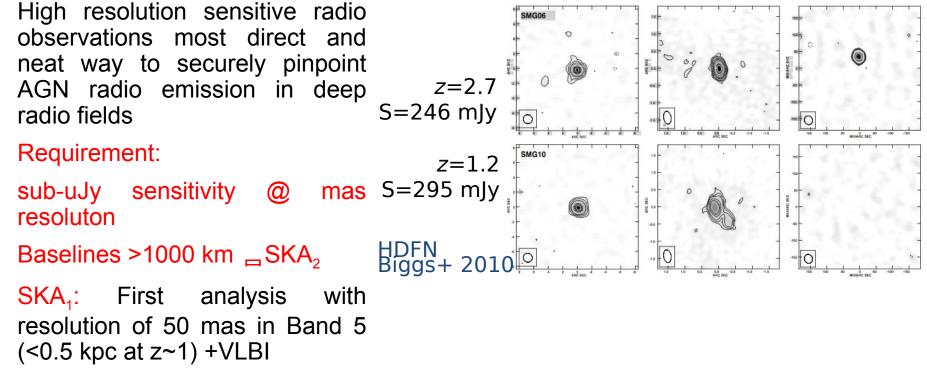

Complete census of RL and RQ AGNs

RL AGN - Radio Mode →jet-driven mechanical feedback

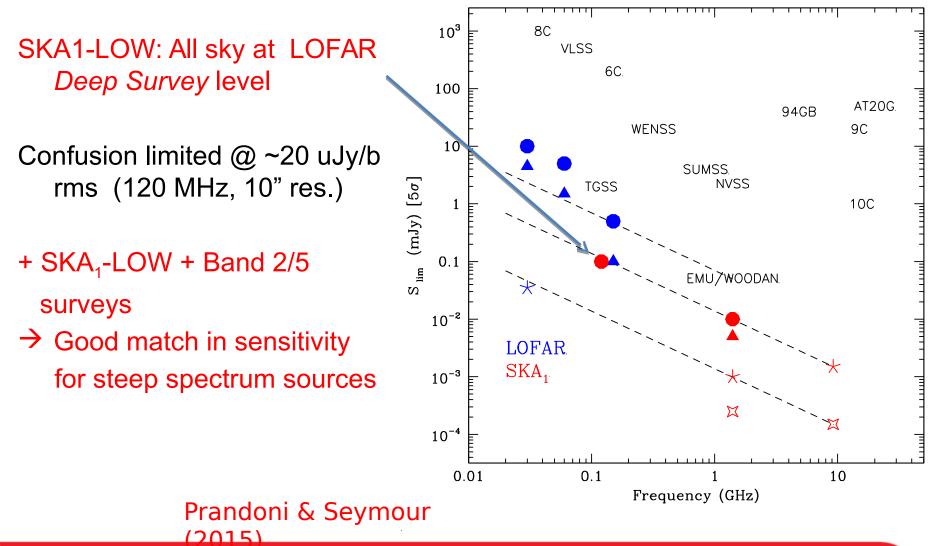
RQ-AGN - QSO Mode →radiation-driven feedback (winds) •RQ-AGN start to appear at uJy levels in deep radio fields

□ Evolution of radio-selected AGN down to RQ regime [P~10²¹ W/Hz] \rightarrow RQ/RL Dichotomy

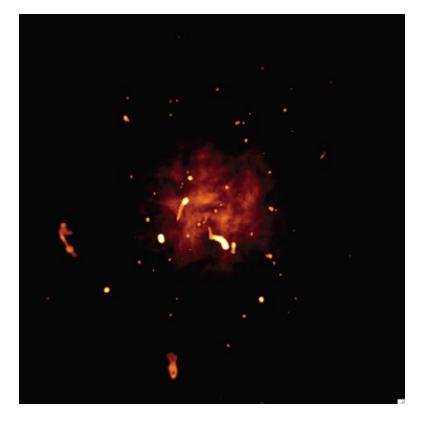

Role of AGN feedback


Gravitational Lensing

Courtesy N. Jackson


SKA as a VLBI Machine

High spatial resolution allows to separate AGN/SF contributions in *hybrid* sources



SKA₁ Reference Surveys vs frequency

Galaxy Clusters – SKA_LOW

Ferrari et al. (2015)

SKA1-LOW:

Confusion limited @ ~20 uJy/b rms (120 MHz, 10" res.)

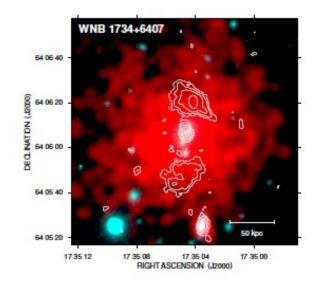
Exploit excellent surface brightness Sensitivity of SKA-LOW in synergy with eROSITA, up to z~0.5

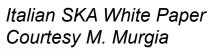
SKA will be sensitive to USSRHs (low-mass mergers) and "offstate" RHs (relaxed clusters)

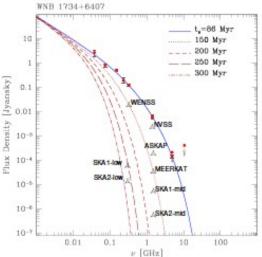
SKA2:

For higher-z needs <10" resolution to remove foreground galaxies

Physics & Life Cycle of RL AGNs


Surface brightness sensitivity + steep spectrum: Resolved studies of extended RGs


SKA1 _□ most extended RGs (>10 arcsec)


SKA2 _ full RG population

- ⊐USS dying radio sources
- →1st generation RL AGNs (z>6)

SKA2 👝 <50 MHz

- How do we get redshifts?
- How do we separate AGN and SFGs?
- How do we convert radio luminosity to SFR and AGN jet power?
- How do we match to simulations?

- How do we get redshifts?
- How do we separate AGN and SFGs?
- How do we convert radio luminosity to SFR and AGN jet power?
- How do we match to simulations?

POSSIBILITION

Issues:

- Large overlap in key personal
- SWG has different mandate
- Need to engage young people who will actually lead the SKA1 analysis
- How to manage? Will it happen organically, how will leadership be shared?

Development of KSP from SWG

Issues:

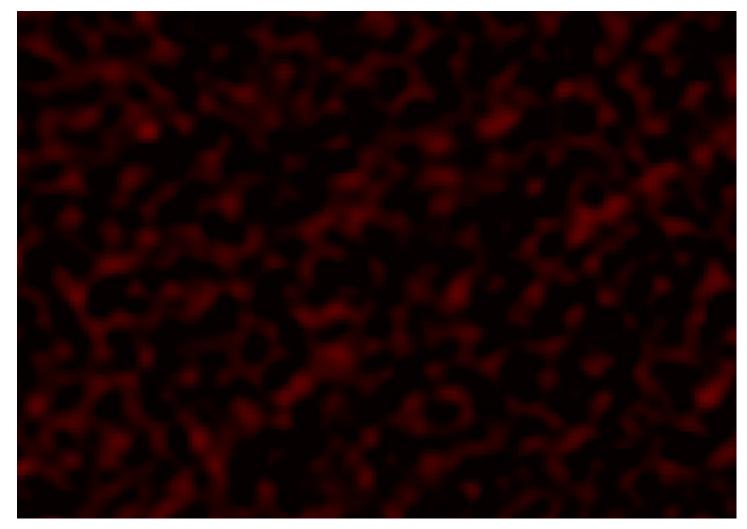
- Large overlap in ke
- SWG has different
- Need to engage you actually lead the SI
- How to manage? W how will leadership

ssues:

- Large overlap in key personal
- SWG has different mandate
- Need to engage young people who will actually lead the SKA1 analysis
- How to manage? Will it happen organically, how will leadership be shared?

http://www.ast.uct.ac.za/sparcs2015/

http://askap.pbworks.com/w/page/94530611/Meeting 2015Aug12



Conclusions

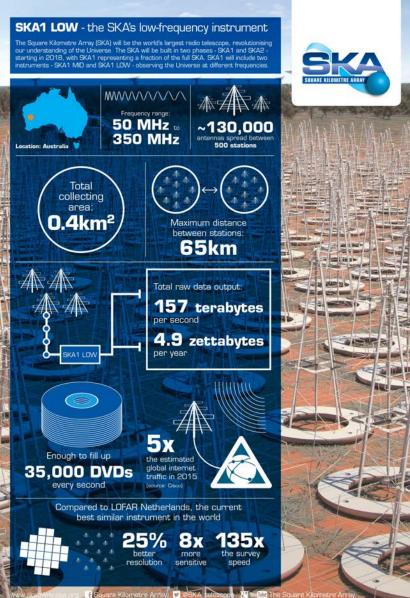
- Continuum science covers diverse topics: galaxy evolution, galaxy clusters, strong lensing, AGN & SF physics
- Sensitivity plus survey speed = novel view of galaxy evolution
- Added value from uJy and sub-uJy sensitivities
 @ sub-arcsec resolution + Band 5 in phase 1
- Continuum Chapters all available: <u>http</u>
 <u>http}
 <u>http</u>
 <u>http</u>
 <u>http</u>
 <u>http}
 {http}
 {http</u></u>
- Next step: commence KSP planning, refine reference surveys, examine commensality

Bonus: more foregrounds

Credit: MWA, Hurley-Walker & Seymour

Chapters all available: <u>http://arxiv.org/html/1412.6942v1</u>

- What is the key science planned for SKA1? Refine from EMU
- Where does Australia have critical mass (research-wise)? Leadership potential? Yes, Build on ASKAP/MWA
- What are the synergies with other wavelengths? Are these links in place? Keep track of multi-lambda
- Is there potential science that has been missed by the written science cases – how well developed is it – is there work to be done?
- (Have you considered developing new science interests over the next 5 years?)
- What is the most exciting science that you think should be pursued by SKA1? The new class of objects from EMU


OzSKA Continuum Discussion

- Key Science is SFH officially, but can't disentangle from the general theme of galaxy evolution
- Good expertise already here in Australia, but little overlap with SKA Continuum SWG, get engaged
- Key to science is to align with other multi-lambda deep surveys
- Accept science case will evolve, e.g. with EMU we keep generating new KSPs after we thought we'd exhausted ideas
- How do percusors feed into SKA: MWA/GLEAM and ASKAP/EMU will provide SKA with an all-sky model
- Match to simulations, possible new KSP for EMU
- The new class of objects from EMU/GLEAM
- Broad band radio science
 - LOW quickly confused -> cover wide-lambda
 - Need to get continuum from FLASH between MWA+EMU
 - High-nu survey (300MHz) from eMWA
 - Deep/Wide CX-band observation of the ATLAS survey fields

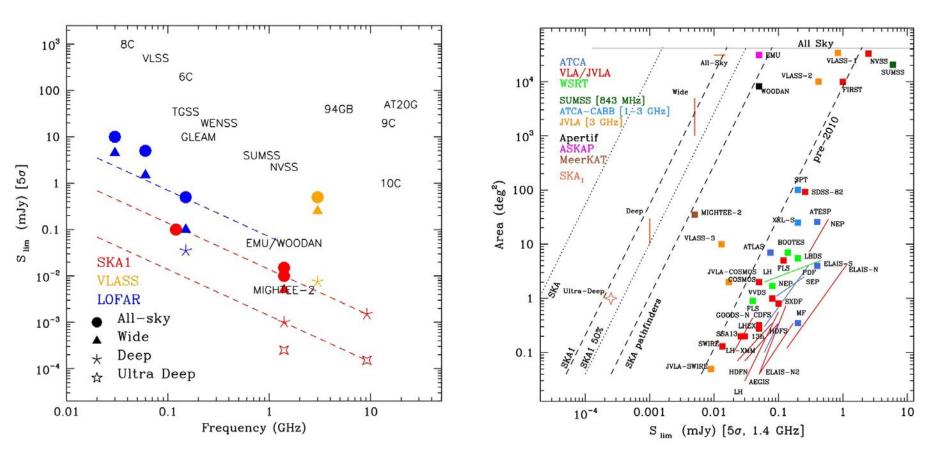
SKA Rebaselining

SKA Science WGs

- Provide advice on science requirements
- Provide operational advice
- Make recommendations on potential improvements
- Promote SKA and science
- Structure:
 - SWG chairs
 - Core members
 - Full teams

	Main Science	Frequency	Tier	Sensitivity	Area	Resolution	Relevant Science
2)	Drivers	(GHz)		rms µJy/b	deg ²	arcsec	
))	SFHU	$\sim 1^a$	Ultra Deep	0.05	1	0.5^{b}	SFHU non-thermal; $z \sim 3-6$
							SMBH evolution/AGN feedback
			Deep	0.2	10-30	0.5	SFHU non-thermal; $z \sim 1-2$
							SMBH evolution/AGN feedback
			Wide	1	$1-5 \times 10^{3}$	0.5	SFHU non-thermal; $0 < z < 1$
							Resolved SF in nearby Universe
							SMBH evolution/AGN feedback
							RL/RQ AGN dichotomy
							SF/AGN astrophysics in nearby
							galaxies
		~ 10	Ultra Deep	0.03	0.008	0.1	SFHU thermal; $z \sim 3-6$
							Resolved SF at $z \sim 1-2$
							SF/AGN Interplay
			Deep	0.3	0.5	0.05	SFHU thermal $z < \sim 1-3$
							Resolved SF at $z < 1$
							SF/AGN Interplay
	Clusters	0.12	All-sky	$\sim 20^c$	31×10^{3}	10	RH and USSRH
							hadronic 'off-state' RH
							cosmic filaments
							RL AGN physics
							RL AGN in the EoR
	Strong GL	1.4	All-sky	3	31 10 ³	≤ 0.5	Strong GL
							SF/AGN astrophysics in nearby
							galaxies
							rare populations
	Legacy	1.4	All-sky	2	31 10 ³	~ 2	Legacy
				2			Galaxy Plane
				2			Serendipity
							rare populations

 a Reference value. The observing frequency can be fine-tuned within Band 1 and/or 2


^{*b*} Reference value at 1 GHz. < 1 arcsec required to avoid confusion (see text)

^c Confusion limited

2015

SKA Continuum Reference Surveys

SKA KSPs

- Ensure KS objectives addressed
- Facilitate deliverary of data products
- Share expertise between members
- 50-70% of time dedicated to KSPs
- KSPs expected to dedicate resources
- Membership open to SKA members, but some restrictions for non-members
- Great opportunity to get involved now
- 2-3 workshops per year: 1st in Stockholm this August