Optical/IR – the Big Picture

EUCLID

LSST

Warrick Couch, AAO

VISTA/4MOST

KECK

SKA – Highest Science Priorities

Science	SWG	Objective	SWG
Guai	3000	Objective	Nalik
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37 + 38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal & Thermal processes	1+2/8

SKA Science Priority Outcomes document

SKA Science Priorities – Optical/IR Synergies SKA1-LOW

Sci Priority	Approach/method	Opt/IR Synergy	Opt/IR observations
• Cosmic Dawn/ <u>EoR</u>	Detect/characterize ionized structures and their power spectrum over EoR	Determining the redshift and sources of ionization	Ultra-deep imaging & spectr (8m, ELT, JWST)
• Pulsars	Detection & high- precision timing for tests of gravity and GW detection	Multi-messenger follow-up of GW events	Rapid <u>ToR</u> imaging and possibly <u>spectr</u> (any)
• Transients	Detection, localisation and redshift determination of coherent bursts to z~2	Association with galaxy and cluster halos.	Deep imaging, phot-z, spec-z (LSST, EUCLID)

SKA Science Priorities - Optical/IR

Sci Priority	Approach/method	Opt/IR Synergy	Opt/IR observations
Pulsars	Detection & high- precision timing for tests of gravity and GW detection	Multi-messenger follow-up of GW events	Rapid ToR imaging and possibly spectroscopy (any)
Transients	Detection, localisation and redshift determination of coherent bursts to z~2	Association with galaxy and cluster halos.	Deep imaging, phot-z, spec-z (LSST, EUCLID)
• HI	Resolved HI kinematics & morphology of M* galaxies at z=0.5-0.8	Resolved stellar & ionized gas kinematics & morphology_of the same galaxies	Spatially resolved IFU spectr + multi- band imaging (8m, ELT)
• HI	High spatial resolution studies of the ISM in nearby galaxies	Resolved stellar & ionized gas kinematics & morphology_of the same galaxies	Spatially resolved IFU spectr + multi- band imaging (AAT-HECTOR)
• HI	High spatial resolution studies of HI in the Galaxy and <u>Magellanic</u> Clouds	Comparison with components traced by optical/IR	Wide-field imaging and spec
Cradle of life	Map dust grain growth in cm-size regime in proto- planetary disks	?	
Cosmology	HI & continuum mapping over 30,000 deg ² from z=0.2-3 to determine primordial non-Gaussian- ity and test gravity on super-horizon scales	Cross-correlation with optical/IR surveys to deliver much greater precision	Deep, wide-field red- shift surveys (4MOST, PFS, MSE)

Key optical/ir capabilities for maximizing synergies:

- **Imaging** deep, wide-field, multiband (incl nb), temporal, high spatial resolution
- **2D Spectroscopy** deep, widefield, high-multiplex, S/N and spectral resolution sufficient for measurement of redshifts and SF/AGN diagnostics
- **3D Spectroscopy** <u>spatially</u> <u>resolved</u> mapping of kinematics, SF & AGN activity, and stella individual galaxies

Timeline for multi-wavelength

What is Euclid ?

			Eddrieffi		
		SURVE	YS In ~6 yea	ars 20	020
	Area (deg2)		•	Description	
Wide Survey 15,000 deg ²		2	Step and stare with 4 dither pointings per step.		
Deep Survey	40 deg2		In at least 2 patches of $> 10 \text{ deg}^2$		
	40 deg		2 magnitudes deeper than wide survey		
		PAYLO	AD		
Telescope 1.2 m Korsch, 3 mirror anastigmat, f=24.5 m		m			
Instrument	VIS	NISP			
Field-of-View	0.787×0.709 deg ²	$0.763 \times 0.722 \text{ deg}^2$			
Capability	Visual Imaging	NIR Imaging Photometry NIR Spectroscopy			
Wavelength range	550–900 nm	Y (920-	J (1146-1372	H (1372-	1100-2000 nm
		1146nm),	nm)	2000nm)	
Sensitivity	24.5 mag	24 mag	24 mag	24 mag	3 10 ⁻¹⁶ erg cm-2 s-1
	10o extended source	5 point	5σ point	5σ point	3.5σ unresolved line
		source	source	source	flux
	Shapes + Photo-z of $\underline{n} = 1.5 \times 10^9$ galaxies z of $n=2.5 \times 10^7$ galaxies			=2.5x10 ⁷ galaxies	

Launch

Possibility other surveys: SN and/or µ-lens surveys, Milky Way (TBC): after Mission PDR

Ref: Euclid RB Laureijs et al arXiv:1110.3193

Primary mission: to map the geometry of the dark universe over the entire period dark energy played a significant role in accelerating the expansion (0 < z < 2)

4MOST

Instrument Specification

Specification	Design value
Field-of-View (hexagon)	>4.0 degree ² (ø>2.5°)
Multiplex fiber positioner Medium Resolution Spectrographs (2x) # Fibres Passband	~2400 R~5000-7000 1600 fibres 390-930 nm
Velocity accuracy High Resolution Spectrograph (1x) # Fibres Passband Velocity accuracy	< 2 km/s R~20,000 800 fibres 392-437 & 515-572 & 605-675 nm < 1 km/s
# of fibers in Ø=2' circle	>3
Fibre diameter	Ø=1.4 arcsec
Area (first 5 year survey)	>2h x 16,000 deg ²
Number of science spectra (5 year)	~75 million of 20 min

Tilting Spine (Echidna) positioner

- ~2400 fibres
 - Large, overlapping patrol areas enables dense target packing and special high-resolution fibres
- Closest separation ~15 arcsec
- Reconfiguration time <2 min during science CCD readout

FMOS Echidna on Subaru

wide area VISTA extra-galactic survey

Wide Area VISTA Extra-galactic Survey

A 4MOST Design Reference Survey 2-4 million galaxies WIDE (700 sq deg): r<22 (photo-z < 0.2) VST KiDS South DEEP (100 sq deg): r<22 GAMA23 (VST KiDS) CDM v WDM 85,000 groups (Wide) 50,000 groups (Deep) Mass, Energy, Structure to z=1

Deep = 75x zCOSMOS

THE LSST

Contiguous overlapping imaging of over half the sky 6 bands (ugrizy, 320–1050 nm)

50 PB imaging data 15 PB catalog database

~15 TB of raw imaging / nt

Effective diameter of 6.5m 3.2 Gigapixels

Large field of view (9.6 deg²) 0.2×0.2 arcsec² pixels

THE LSST

Taking an Inventory of the Solar System Mapping the Milky Way Exploring the Transient Optical Sky Probing Dark Energy and Dark Matter

Cerro Pachón in northern Chile

First light around 2021 First public data releases around 2023

GALAXY EVOLUTION

SKA will probe e.g. AGN and SF history over cosmic time and wide area

> Redshifts and stellar masses from LSST

Pathway from neutral (SKA HI) to molecular gas (ALMA) to star formation (SKA continuum, LSST).

NB deep drilling fields (9 sq deg) - will see objects at z>6 (match with CO redshifts from SKA band 5)

Australian membership of LSST

- Current membership/involvement in science planning phase via CAASTRO and ICRAR (MoA's providing access for ~20 astronomers + their postdocs & students)
- Community-wide access prior to and through the operations phase to be provided by AAO

GMT Status

- Construction phase officially began on 25 March, with US\$500M of legallybinding funding commitments signed by partners
- This will take place in 3 stages with following approximate time-line:
 - Stage 1 (dome, telescope with 4/7 primary mirrors, 2 instruments) – mid-2020
 - Stage 2 (7/7 primary mirrors, partial AO, 3rd instrument) – mid-2022

Internal Structure of Distant Galaxies

Z = 0.1 HST H α + Continuum

Z = 1.4 GMT @1.6μm 1-Hour

Probing the EOR with GMT & SKA

z=6.407

103

10^B Key - Wi of re 10⁴ Ho Ho - Ho

Key Questions:

- What is "the" redshift of reionization?
- What is the source(s) of ionization?
- How does the topology evolve with redshift?

$Ly\alpha$ as a probe of the EOR

How can ELTs explore the end of the Dark Ages?

- Gunn-Peterson effect
- "Dark" GRBs ?
- Lyα florescence from boundary regions
- Evolution of the Lyα luminosity density

- Spatial correlation between SKA HI maps and LAEs
- Pencil beam surveys targeted from SKA

IGM Structure at $z \sim 9$

"Pencil beam" surveys can easily miss the important structures

SKA can provide the map needed to make an informed survey for $Ly\alpha$ at the end of the EOR.

130 Mpc

Summary – key points

- Synergies with SKA truly multi-wavelength, and there will be numerous facilities (many new!) in each of the wavelength regions available to exploit these in the SKA era.
- The optical/IR region is no exception, with a rich collection of facilities that will provide deep imaging, spec-2D & spec-3D of the same large regions of sky covered by SKA.
- Australia will have access to many of these optical/ir facilities and with its strong and wellconnected radio/optical communities, is well placed to exploit these synergies
- If funded, CAASTRO-3D will provide a critical role in coordinating and resourcing this activity, with