

International Centre for Radio Astronomy Research

Surveys of the Galactic Plane with the SKA

Dr Andrew Walsh (Curtin/ICRAR) Dr Jo Dawson (Macquarie/CASS) Dr Adam Ginsburg (ESO Garching)

THE UNIVERSITY OF WESTERN AUSTRALIA

Artist's impression of the Central Molecular Zone (John Bally)

ICRAR

Two spectral line

tracers: 50 km/s cloud

One in absorption

One in emission

CO in emission Dame et al. (2000)

ICRAR

ICRAR

SPLASH: The Southern Parkes Large-Area Survey in Hydroxyl

GASKAP – the Galactic ASKAP survey – OH Scutu Centaurus Arm Arm Norma Ann Outer Anti Perseus Arm 🕑 Sur

Formaldehyde – H₂CO

Collisions with H₂ create "anti-inversion" in low energy levels

Collisions with H₂ create "anti-inversion" in low energy

Townes & Cheung (1969)

Collisions with H₂ create "anti-inversion" in low energy

Townes & Cheung (1969)

Ginsburg et al (2011)

Collisions with H₂ create "anti-inversion" in low energy levels

Can be used for line-of-sight geometry tests – complement OH

Collisions with H₂ create "anti-inversion" in low energy levels

Can be used for line-of-sight geometry tests – complement OH

Densitometer IF both 14.5 and 4.8 GHz transitions included, sensitive from $\sim 10^3$ - 10^6 cm⁻³

Collisions with H₂ create "anti-inversion" in low energy levels

Can be used for line-of-sight geometry tests – complement OH

Densitometer IF both 14.5 and 4.8 GHz transitions included, sensitive from $\sim 10^3$ - 10^6 cm⁻³

Weak line: avg. Galactic molecular cloud requires 12 hours on JVLA. But 1-2 hours on SKAZISKAMAD 2015

Capabilities provided by SKA1-MID and other telescopes:

Focus on intermediate density regime ($~\sim 10^2\text{--}~10^4~\text{cm}^{-3})$

The formation of molecular clouds

Line of sight geometry Volume density

$H_2CO + OH + CO$

What about SKA2?

What about SKA2?

Frequency range extends to include NH_3 inversion transitions

$H_2CO + OH + CO + NH_3$

What about SKA2?

Frequency range extends to include NH_3 inversion transitions

Higher density (10⁴⁺ cm⁻³)

$H_2CO + OH + CO + NH_3$

What about SKA2?

Frequency range extends to include NH₃ inversion transitions

Higher density (10⁴⁺ cm⁻³)

Excellent temperature probe from 15-400K

- What about SKA2?
- Frequency range extends to include NH₃ inversion transitions
- Higher density (10⁴⁺ cm⁻³)
- Excellent temperature probe from 15-400K
- Molecular cloud formation _ star formation

- What about SKA2?
- Frequency range extends to include NH₃ inversion transitions
- Higher density (10⁴⁺ cm⁻³)
- Excellent temperature probe from 15-400K
- Molecular cloud formation _ star formation
- Geometry, volume density, temperature

$H_2CO + OH + CO + NH_3$

- What about SKA2?
- Frequency range extends to include NH₃ inversion transitions
- Higher density (10⁴⁺ cm⁻³)
- Excellent temperature probe from 15-400K
- Molecular cloud formation _ star formation
- Geometry, volume density, temperature

Now we have the sensitivity to extend to the extragalactic scale!