

International Centre for Radio Astronomy Research

HI Surveys with the Rebaselined SKA

Martin Meyer

with thanks to Oosterloo, Staveley-Smith, Popping, Robotham, Driver, Jarvis, HI SWG

THE UNIVERSITY OF WESTERN AUSTRALIA

SKA1 HI Surveys

Key Goal: survey ~M_{HI}* to z~0.8 <u>with high spatial resolution</u>

 \rightarrow detailed studies of environment, interactions, mergers, gas fuelling

Science Goal	SWG	Objective	SWG Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
37 + 38	Continuum	Star formation history of the Universe (SFHU) – I+II. Non-thermal & Thermal processes	1+2/8

Pathfinder HI Surveys

Blind HI Surveys:

- <u>WALLABY (ASKAP)</u> + WNSHS (APERTIF):
 - 600k galaxies, all-sky
- CHILES (VLA):
 - 300 galaxies, 0.25 deg²
- DINGO (ASKAP):
 - **DEEP**: 50k gals, 150 deg²
 - UDEEP: 50k gals, 60 deg²
- LADUMA (MeerKAT):
 - 10k galaxies, 1+ deg²

Pathfinder HI Surveys: Resolution

	Survey	Resolution	Redshift	Sources
	HIPASS/ ALFALFA	3-15 arcmin	z < 0.06	unresolved
	WALLABY/ WNSHS	15-30 arcsec	z < 0.26	low-z resolved (~slightly)
	DINGO	30-40 arcsec	z < 0.43	unresolved
0.6	CHILES	5-10 arcsec	z < 0.4	resolves galaxies z ≲ 0.3
0.8	LADUMA	8-16	z < 1.2	mostly unresolved

Pathfinder HI Surveys: Resolution

SKA1 Capabilities

SKA1 Capabilities

SKA1 Surveys: Pt. Source Sensitivity

Highlights

- Option: pusher deeper in single pointing
- Option: carry out CHILES/ LADUMA type studies over larger areas
- Issues: band 1/2 frequency divide; band 1 performance; band 1 delivery timescale
- Would ideally shift band 2: 950-1760 → 770-1430 MHz

SKA1 Surveys: Resolution @ 10²⁰ cm⁻²

- possible to resolve many galaxies over large redshift range
- understand role of local environment

CRAR

- carry out detailed studies of galaxy kinematics & angular momentum
- high resolution studies of ISM in nearby galaxies (~100 pc)

SKA1 Surveys: Resolution @ 10¹⁹ cm⁻²

SKA1 Surveys: Resolution @ 10¹⁹ cm⁻²

- HALOGAS type studies beyond local Universe
- environment/accretion

ICRAR

SKA1 Surveys: Resolution @ 10¹⁸ cm⁻²

TRAPHIC HI column densities from z=2 to z=0

Sunday, 6 February 2011

New studies of the disk-halo-IGM interface

Need Multi- λ

<u>HI + multi- λ essential for understanding the evolution of galaxies</u>

- different baryonic states: gas (atomic/molecular/ ionised), stars, dust
- environment: group properties (membership/ multiplicity/halo mass/ central-satellite), accretion, outflow
- feedback: AGN, stars
- galaxy dynamics: gas, stars, halo

Need Multi- λ : Methods

Improved ability to find and measure HI content through optically motivated methods

Multi- λ Data for HI Pathfinders

Multi- λ for the SKA

"Connecting the Baryons" Meyer, Robotham, et al., 2015, SKA science chapter

https://asgr.shinyapps.io/ganttshiny

Spectroscopic Survey Facilities

GAMA / DINGO Multi-λ

Panchromatic photometry

LAMBDAR software addresses: mismatched PSFs (convolved r-band apertures), deblend, deconfuse

GAMA / DINGO Multi-λ

Mass:

- GSMF (Baldry et al)
- GSMF by type (Kelvin et al)
- SMBH MF (Andrews et al)
- DUST MF (Dunne et al)
- DM HMF (Robotham et al)

Energy:

- CSED (Driver et al)
- CSFH (Gunawardhana et al)

Structure:

- Mass-size relations (Lange et al)
- Groups (Robotham et al)
- Filaments (Alpaslan et al)
- Tendrils (Alpaslan et al)
- Pairs (Robotham et al)
- Bulge-disc decomp (Lange et al, Haussler et al)

WAVES / LSST / Euclid

WAVES-WIDE

- 750 deg² to r_{AB} < 22 mag + photo-z (< 0.2) pre-selection
- ~0.9m galaxies will give 85k DM halos 10^{11} – $10^{12} M_{\odot}$

WAVES-DEEP

- 100 deg² to $r_{AB} < 22$ mag
- ~1.2m galaxies to z~1
- detection of ~50k DM haloes (to $10^{12} M_{\odot}$)

Filter	Time (per source)	Time (full survey)	5σ AB	5σ Vega	UKIDSS -DXS	Seei ng	Moon
Z	17.5 hours	456 hours	25.7	25.2	-	0.8	D
Y	6.7 hours	175 hours	24.6	24.0	-	0.8	G
J	8.0 hours	209 hours	24.5	23.7	22.3	0.8	G
Н	8.0 hours	221 hours	24.0	22.7	22	0.8	В
K _s	6.7 hours	180 hours	23.5	21.7	20.8	0.8	В

VISTA-VIDEO, PI: Jarvis

Additional Ultra-Deep Fields

"Typical" multi-wavelength coverage over southern deep fields

- Heterogeneous X-ray data from Chandra/XMM (eROSITA soon)
- GALEX: FUV + NUV to AB ~24 (~6arcsec resolution)
- VST-VOICE + DES + HSC + LSST: ugriz to mAB ~26-27 (<1arcsec resolution)
- UltaVISTA/VIDEO: (Z)YJHKs mAB = 25.7, 25.6, 24.5, 24.0, 23.5 (<0.9arcsec resolution)
- SERVS/DeepDrill: Spitzer 3.6 & 4.5um to 2uJy (~2arcsec resolution)
- SWIRE IRAC 5.8 & 8.0um to ~30uJy (~3-4arcsec resolution)
- MIPS 24/70/160um to 0.3,20.100mJy (~10,25,50 arcsec resolution)
- Herschel-HerMES 110,160,250,350,500um to 31.5,60.2,12.7,10.5,15.2mJy (7,10,18,25,35arcsec resolution)
- JVLA/MeerKAT "continuum" imaging 1-4GHz (~1-8arcsec resolution)

SED fits using the energy-balance models of da Cunha et al. 2008

From Smith et al. 2012

Additional Ultra-Deep Fields

Issue: spectroscopy needs improving!

- Spectroscopy in ~1 deg² fields often heterogeneous and not ideal for deep HI
- Mainly magnitude limited, sometimes colour selection for high-z

Potential solution: MOONS

Parameter	Specifications
Telescope	VLT
FoV	500 arcmin
Multiplex	1000 (possibility to deploy in pairs)
Close packaging	at least two fibres within 10 arcsec
Sky-projected fibre diameter	1.05 arcsec

WAVES / MOONS

Survey	Area	Time	σ	log(N	Beam	Band	z	Z
	(deg	(hours)	(µJy, 50kHz)	(5σ, 50kHz)	(arcsec)			
Wide	750	2k	226	20	12	2	z<0.5	0.17
Deep	100	2k	82	20	6.9	2	z<0.5	0.29
UDeep	18	2k	36	20	4.6	2	z<0.5	0.44
Single	0.5	2k	11	20	2.5	1	z>0.35	0.64

@ 1.4 GHz, rebaselined

Martin Meyer, OzSKA, Melbourne, April 2015

	Area	Time	σ	log(N	Beam	Band	z	z
Survey	(deg	(hours)	(µJy, 50kHz)	(5σ, 50kHz)	(arcsec)			
Wide	750	2k	226	20	12	2	z<0.5	0.17
Deep	100	2k	82	20	6.9	2	z<0.5	0.29
UDeep	18	2k	36	20	4.6	2	z<0.5	0.44
Single	0.5	2k	11	20	2.5	1	z>0.35	0.64

Survey	Area	Time	σ	log(N	Beam	Band	z	z
	(deg	(hours)	(µJy, 50kHz)	(5σ, 50kHz)	(arcsec)			
Wide	750	2k	226	20	12	2	z<0.5	0.17
Deep	100	2k	82	20	6.9	2	z<0.5	0.29
UDeep	18	2k	36	20	4.6	2	z<0.5	0.44
Single	0.5	2k	11	20	2.5	1	z>0.35	0.64

Survey	Area	Time	σ	log(N	Beam	Band	z	z
	(deg	(hours)	(µJy, 50kHz)	(5σ, 50kHz)	(arcsec)			
Wide	750	2k	226	20	12	2	z<0.5	0.17
UDeep	18	2k	36	20	4.6	2	z<0.5	0.44
Single	0.5	2k	11	20	2.5	1	z>0.35	0.64

	Area	Time	σ	log(N	Beam	Band	Z	Z		
Survey	(deg	(hours)	(µJy, 50kHz)	(5σ, 50kHz)	(arcsec)					
Wide	750	2k	226	20	12	2	z<0.5	0.17		
ULeep	18	2k	36	20	4.6	2	z<0.5	0.44		
Single	0.5	2k	11	20	2.5	1	z>0.35	0.64		
@ 1.4 GHz, rebaselined										
Wide	750	5k	229	20	13.4/30	ASKAP	z<0.26	0.17		

Martin Meyer, OzSKA, Melbourne, April 2015

Survey	Area	Time	σ	log(N	Beam	Band	z	z
	(deg	(hours)	(µJy, 50kHz)	(5σ, 50kHz)	(arcsec)			
Wide	750	5k	229	20	13.4	ASKAP	z<0.26	0.17
UDeep	18	2k	36	20	4.6	2	z<0.5	0.44
Single	0.5	2k	11	20	2.5	1	z>0.35	0.64

SKA1

SKA1

Martin Meyer, OzSKA, Melbourne, April 2015

Full SKA

Martin Meyer, OzSKA, Melbourne, April 2015