

International Centre for Radio Astronomy Research

Cosmic HI Density Evolution

Jonghwan Rhee (ICRAR/UWA)

Government of Western Australia Department of the Premier and Cabinet Office of Science

Stellar and Gaseous components

Spiral Galaxies in THINGS — The HI Nearby Galaxy Survey

color coding: THINGS Atomic Hydrogen (Very Large Array) Old stars (Spitzer Space Telescope) Star Formation (GALEX & Spitzer)

scale: 15,000 light years

Image credits: VLA THINGS: Walter et al. 08 Spitzer SINGS: Kennicutt et al. 03 GALEX NGS: Gil de Paz et al. 07

Star formation history

CRAR

Madau & Dickinson 2014

Cold gas (HI) component

OzSKA 3 in Sydney, May 8-9, 2017

HI gas evolution studies

HI in the local universe

- HI gas quantified from 21-cm blind surveys:
 - HIPASS: HI Parkes All Sky Survey (Zwaan et al. 2005) survey area 21341 deg², 4315 detections, z < 0.042
 - ALFALFA: Arecibo Legacy Fast ALFA survey (Martin et al. 2010) survey area 2799 deg², 10119 detection, z < 0.06

HI gas evolution studies

HI gas at high redshifts

- Knowledge of HI gas from 21-cm observations is not available.
- Different techniques for HI measurement at high redshift (z>2): Damped Lyman-α absorption (DLA).

HI gas evolution studies

HI gas between low and high-z

- HI spectral stacking is a powerful tool to study this range.
- Using known optical data (RA, Dec and Redshift), HI spectra are extracted from a 3D radio map.
- Co-add the spectra to obtain average HI spectrum.

HI spectral stacking @ 0.1 < z < 0.4

Target Field	Coordinate (RA&Dec)	Redshift (z)	Lookback Time (Gyr)	Observed Frequency (GHz)	Observation Time	Radio Telescope	Number of stacked galaxies
CNOC2	09:23:46.51 +36:57:37.43	0.1, 0.2	1-2.7	1.160-1.321	120 hr	WSRT	55 <i>,</i> 96
VVDS 14h	13:58:01.60 +05:04:54.00	0.32	3.6	1.060-1.092	136 hr	GMRT	165
COSMOS	10:00:10.01 +02:19:19.95	0.37	4.0	1.024-1.056	134 hr	GMRT	474

Rhee+2013, 2016, 2017

HI gas evolution plot (7 years ago)

ICRAR)

HI gas evolution with redshift

Summary

- HI gas evolution is no longer poorly constrained.
- HI spectral stacking and intensity mapping are very useful for future HI surveys to push their limit still further.
- Intermediate redshift (0.5 < z < 2.0) is crucial to understand the whole picture of HI gas evolution.
- Next generation HI surveys (e.g. Wallaby, DINGO, FLASH, CHILES, LADUMA) will explore this redshift interval SOON.