

HI Galaxy Science Summary

James Allison on behalf of The HI Galaxy Science Working Group 09 May 2017

ASTRONOMY AND SPACE SCIENCE www.csiro.au

Goal: A history of the baryonic Universe in neutral hydrogen

History of the Universe in hydrogen

- How does the distribution, and kinematics, of HI in galaxies evolve over the history of the Universe?
- How is the gas that drives star formation replenished in galaxies?
- What role does neutral gas play in the processes that couple the evolution of galaxies to their black holes?

OzSKA3 2017 | HI SWG

HI galaxy science priorities for SKA 1

HI Science Priorities

- Resolved HI kinematics & morphology of ~10¹⁰ M_☉ mass galaxies out to z~0.8
- High spatial resolution studies of the ISM in the nearby Universe.
- Multi-resolution imaging studies of the ISM in our own Galaxy
- HI absorption studies out to the highest redshifts.
- 5) The gaseous interface and accretion physics between galaxies and the IGM

Braun+14, SKA1 Science Priority Outcomes

Science Goal	SWG	Objective	SWG Rank
1	CD/EoR	Physics of the early universe IGM - I. Imaging	1/3
2	CD/EoR	Physics of the early universe IGM - II. Power spectrum	2/3
3	CD/EoR	Physics of the early universe IGM - III. HI absorption line spectra (21cm forest)	3/3
4	Pulsars	Reveal pulsar population and MSPs for gravity tests and Gravitational Wave detection	1/3
5	Pulsars	High precision timing for testing gravity and GW detection	1/3
6	Pulsars	Characterising the pulsar population	2/3
7	Pulsars	Finding and using (Millisecond) Pulsars in Globular Clusters and External Galaxies	2/3
8	Pulsars	Finding pulsars in the Galactic Centre	2/3
9	Pulsars	Astrometric measurements of pulsars to enable improved tests of GR	2/3
10	Pulsars	Mapping the pulsar beam	3/3
11	Pulsars	Understanding pulsars and their environments through their interactions	3/3
12	Pulsars	Mapping the Galactic Structure	3/3
13	HI	Resolved HI kinematics and morphology of ~10^10 M_sol mass galaxies out to z~0.8	1/5
14	HI	High spatial resolution studies of the ISM in the nearby Universe.	2/5
15	HI	Multi-resolution mapping studies of the ISM in our Galaxy	3/5
16	HI	HI absorption studies out to the highest redshifts.	4/5
17	HI	The gaseous interface and accretion physics between galaxies and the IGM	5/5
18	Transients	Solve missing baryon problem at z~2 and determine the Dark Energy Equation of State	=1/4
19	Transients	Accessing New Physics using Ultra-Luminous Cosmic Explosions	=1/4
20	Transients	Galaxy growth through measurements of Black Hole accretion, growth and feedback	3/4
21	Transients	Detect the Electromagnetic Counterparts to Gravitational Wave Events	4/4
22	Cradle of Life	Map dust grain growth in the terrestrial planet forming zones at a distance of 100 pc	1/5
23	Cradle of Life	Characterise exo-planet magnetic fields and rotational periods	2/5
24	Cradle of Life	Survey all nearby (~100 pc) stars for radio emission from technological civilizations.	3/5
25	Cradle of Life	The detection of pre-biotic molecules in pre-stellar cores at distance of 100 pc.	4/5
26	Cradle of Life	Mapping of the sub-structure and dynamics of nearby clusters using maser emission.	5/5
27	Magnetism	The resolved all-Sky characterisation of the interstellar and intergalactic magnetic fields	1/5
28	Magnetism	Determine origin, maintenance and amplification of magnetic fields at high redshifts - I.	2/5
29	Magnetism	Detection of polarised emission in Cosmic Web filaments	3/5
30	Magnetism	Determine origin, maintenance and amplification of magnetic fields at high redshifts - II.	4/5
31	Magnetism	Intrinsic properties of polarised sources	5/5
32	Cosmology	Constraints on primordial non-Gaussianity and tests of gravity on super-horizon scales.	1/5
33	Cosmology	Angular correlation functions to probe non-Gaussianity and the matter dipole	2/5
34	Cosmology	Map the dark Universe with a completely new kind of weak lensing survey - in the radio.	3/5
35	Cosmology	Dark energy & GR via power spectrum, BAO, redshift-space distortions and topology.	4/5
36	Cosmology	Test dark energy & general relativity with fore-runner of the 'billion galaxy' survey.	5/5
37	Continuum	Measure the Star formation history of the Universe (SFHU) - I. Non-thermal processes	1/8
38	Continuum	Measure the Star formation history of the Universe (SFHU) - II. Thermal processes	2/8
39	Continuum	Probe the role of black holes in galaxy evolution - I.	3/8
40	Continuum	Probe the role of black holes in galaxy evolution - II.	4/8
41	Continuum	Probe cosmic rays and magnetic fields in ICM and cosmic filaments.	5/8
42	Continuum	Study the detailed astrophysics of star-formation and accretion processes - I.	6/8
43	Continuum	Probing dark matter and the high redshift Universe with strong gravitational lensing.	7/8
44	Continuum	Legacy/Serendipity/Rare.	8/8

Table 1. Collated list of science goals. Within each science area, the entries are ordered in the rank provided by the SWG Chairs. The eight different groups of SWG contributions are listed in the Table in an arbitrary sequence.

Science goals - Galaxy evolution z < 0.8

Mass properties - **evolution** of Ω_{HI} & **HI mass function** as a function of environment

Blyth+15

Obreschkow+15 Science goals - Galaxy evolution z < 0.8

de Blok+15

Science goals - ISM in nearby galaxies

- Very high spatial resolution (subkpc) and column density sensitivity (sub 10²⁰ cm⁻²)
- What is the connection between star formation on small scales and global scaling laws (origin of the Kennicutt-Schmidt law)?
- How do galaxies **acquire** sufficient **gas** to sustain their star formation rates?

McClure-Griffiths+15 Science goals - The Galaxy & Magellanic System

MW and Magellanic clouds allow studies of gas content **in greater detail than anywhere else**

- How is **gas exchanged with** surrounding **IGM**?
- How is warm surrounding diffuse gas cooled into molecular clouds, stars?
- SKA will have surface brightness sensitivity, point source sensitivity and angular resolution to understand Milky Way gas all the way from the halo down to the formation of individual molecular clouds.

Morganti+15 Science goals - HI absorption and AGN at z < 6

- HI in absorption connecting the epoch of re-ionisation to the present day —> "21-cm forest"
- How does the cold phase gas in galaxies evolve over the past 12 billion years?

AGN Feedback and Fuelling

- What are the mechanisms by which gas accretes onto AGN?
- Are neutral outflows a common feature of all radio AGN?

Popping+15 Science goals - The Cosmic Web & IGM

- Commensal with the ISM KSP
- How are galaxies **re-fuelled** from the surrounding IGM?
- What is the nature of diffuse intergalactic gas?
- Requires **extremely sensitive** observations at column densities $n_{HI} \approx 10^{18}$

21.0

20.8

20.6

20.4

20.2

20.0

19.8

19.6

19.4

19.2

19.0

 $\log(N_{H})$ Total Hydrogen component

 $32 h^{-1} \text{Mpc}$

32 h⁻¹ Mpc

32 *h*⁻¹ Mpc

 $\log(N_{HI})$ Neutral Hydrogen component

21

20

19

18

17

16

15

14

13

¹² OzSKA3 2017 | HI SWG

32 h^{-1} Mpc

Proposed SKA1 HI surveys

Survey	Area (deg²)	Frea MHz	HI Resolution	<z> (z_{lim})</z>	T (hrs)	N _{gal}
Medium wide	400	950-1420	10"	0.1 (0.3)	2000	~30,000
Medium deep	20	950-1420	5"	0.2 (0.5)	2000	~25,000
Deep	1 pointing	600-1050	2"	0.5 (1)	3000	~3000
Targeted ISM	30 targets	1400-1420	3"-30"	0.002 (0.01)	3000	30
Targeted Accretion	30 targets	1400-1420	30"-1"	0.002 (0.01)	3000	30
Galaxy/MS	500	1418-1422	10"-1'	0 (0)	4,500	1
Galaxy Abs	(5000)	1418-1422	2"	0 (0)	(10,000)	(~4,000)
Absorption	1000+	350-1050	2"	1 (3)	1,000+	~5,000
	1000	200-350	10"	4 (6)	1,000	Unknowr

Commensality, commensality, commensality.

•	Area	Freq	T	Magnetism Cosmology/ Continuum		
Survey	(deg²)	MHz	(hrs)	EoR		
Medium wide	400	950-1420	2000	1000 sq deg 5000 hours weak lensing similar strategy		
Medium deep	20	950-1420	2000	100 deg2 tracing cosmic web, smilar depth		
Deep	1 pointing	600-1050	3000	compatible; magn. plans wider band 1		
Targeted	30 targets	1400-1420	3000	good match in sample, res and depth		
Targeted (Accr)	(30 targets)	1400-1420	(3000)	fully commensal with ISM Accretion		
Galaxy/MS	500	1418-1422	4500	commensal with Galaxy + Magn WG to get optimum 1200 deg2 and 11500 hours		
Galaxy Abs	(5000)	1418-1422	(10000)	fully commensal with "Galaxy/MS", continuum, magnetism		
Absorption	1000+	350-1050	1,000+	all sky, optimum commensality if band 1		
	1000	200-350	1.000	fully commensal 5000 deg2 obsorption survey		

and commensal with medium-wide HI band 2

Recent activities: precursor SKA HI science

Recent activities - JVLA CHILES project

- CHILES Deep 21-cm emission
- 1000hr HI survey, ~300 galaxies at 0 < z < 0.5
 - Most distant detection of 21-cm line emission at z = 0.376
 - Large starbursting galaxy rich in HI & H₂ gas ($M_{HI} = 3 \times 10^{10} M_{solar}$)

Recent activities - KAT-7

• Revealing the edge of M83 & interaction with IGM (Heald+16)

Recent activities - ASKAP wide field

- First wide-field HI images with ASKAP-12 using 36-beams
- Resolved kinematics of IC 5201 (Karen's talk)

Image Credit: WALLABY Survey Science Team

Recent activities - ASKAP HI absorption

• Discoveries of HI absorption at cosmological redshifts

Lensed quasars illuminating cold gas throughout 8 billion years (Allison +17) The first radio-selected 21-cm line DLA survey (Sadler +)

Recent activities - ATCA Legacy Project

- Deep Imaging of the circumgalactic medium (Popping+)
 - Observe 28 spiral Galaxies and their direct environments
 - 2500hr Legacy Program
- Precursor to SKA Accretion KSP

- Measure the extended gas content of galaxies to detect gas accretion and outflows.
- MAGINE Determine the environment of gas accretion
 - Detect the densest peak of the underlying Cosmic Web.

Brightness sensitivity after 8 hours observing

Recent activities - MWA: HI @ z > 5

- HIghz: HI absorption search for high-z radio galaxies (Allison +)
 - Luminous radio galaxies at centres of early cluster formation
 - Optically and infrared faint (z >> 1)
 - Bright steep spectrum, peaked radio sources (Callingham +17)

	Impact of cost control of	on	HI science	
	Remove additional 11 MID Dishes from core This cost control option involves removing 22 SKA1 dishes from within the inner 1.2 km radius. In the current design there are 70 SKA1 (15-m) and 49 MeerKAT (13.5-m) dishes within this radius. In the case of high surface brightness imaging and pulsar searches this reduces the core collecting area by 20%. Pulsar acceleration searches require	MID	20% Benativity Loss in core	32
22	OzSKA3 2017 HI SWG			

This cost control option involves necessitating that the CSP.PSS design processes up to 6 field array search beams per PSS processing node on LOW. Currently the design processes 2 field array search beams per PSS processing node on LOW. To achieve the would require improved processing algorithms (which may not be possible) on the DOM

Cost control: Impact on HI science

"Above the black line"

- Reduction in Science Data Processor capabilities has most potential impact on high priority HI science objectives
- Reduction in angular resolution (both MID & LOW) will impact HI absorption surveys
- Reduction in LOW bandwidth will impact HI absorption surveys

"Below the black line"

- Reduction in MID core baselines will cause severe reduction in HI emission-line column density sensitivity
- Loss of MID Band 1 means no HI science with MID at z > 0.5
- Response currently being compiled by SWG Chairs Martin Myer and Erwin de Blok (please send feedback by Thursday!)

Summary

- SKA1 will be transformational for HI galaxy science
 - Resolved kinematics of $M_{\rm HI} = 10^{10} \, \rm M_{\odot}$ galaxies out to z = 0.8
 - The ISM at 50pc-scale resolution in nearby galaxies
 - Multi-resolution, multi-temperature study of the Galactic ISM
 - Cosmological evolution of cold HI (absorption) out to z = 6
 - The gaseous interface between galaxies and the cosmic web
- Pathfinder telescopes are already demonstrating feasibility of achieving these goals
- "Above the black line" cost control measures are unlikely to have a significant impact on HI science
- If you want to be involved contact working group chairs Martin Meyer (UWA) and Erwin de Blok (ASTRON)

25 OzSKA3 2017 | HI SWG

SKA1-MID Resolution for $N_{\rm HI} = 10^{20} \, \rm cm^{-2}$

HI commensality

Survey		Area	Freq	т	Magnetism	Cosmology /EoR	Continuum	
		(deg ²)	MHz	(hrs)				
Galaxy Evolution	Medium wide	400	950-1420	2000		1000 sq deg 5000 hours weak lensing	similar strategy	
	Medium deep	20	950-1420	2000	100 deg2 tracing cosmic web, similar depth		similar strategy	
	Deep	1 pointing	600-1050	3000	compatible but plans wider		useful only if in band 1	
Nearby galaxies		30 targets	1400-1420	3000	good match in sample, res and depth		ith IGM accretion	
ay/MS	Emission	500	1418-1422	4500	commensal with Galaxy + Magn WG to get optimum 1200 deg2 and 11500 hours			
Miky W	Absorption	(5000)	1418-1422	(10000)	fully commensal with "Milky Way/MS", continuum, magnetism			
IGM Accretion		(30 targets)	1400-1420	(3000)	commensal with Nearby Galaxies			
Absorption	MID	1000+	350-1050	1,000+	all sky, optimum commensal if band 1. Also commensal with medium-wide HI			
	LOW	1000	200-350	1.000		fully commensal 5000 deg2 absorption survey		

