SKA x mm-wave: What can we do with that?

Christian Reichardt University of Melbourne

Outline

- What mm-wave data will be available?
- Maximizing science
 - Complementary constraints
 - Complementary data
 - Cross-correlations

South Pole Telescope

Cosmic microwave power spectrum

The Next Frontier: Polarization

Smith et al 2008

- Any polarization pattern can be decomposed into "E" (grad) and "B" (curl) modes
- Quadrupole anisotropy introduces polarization at surface of last scattering
- Density fluctuations do not produce "B" modes!
- "B" modes are created by:
 - On large scales: primordial gravity waves from Inflation
 - On small scales:
 - lensing of the CMB from large scale structure
 - anisotropic optical depth

Cosmic microwave power spectrum

CMB Experimental Stages

Snowmass: CF5 Neutrinos Document arxiv:1309.5383

CMB Experimental Stages

from L Page

On the ground

Current or planned freqs 145 GHz 30, 40, 90, 150, 230 GHz 90, 150, 220 GHz 40, 90, 150 GHz 150 GHz

Antarctica KECK/BICEP3 SPTPol/SPT-3G +I QUBIC - Bolo int.

Elsewhere (for now) B-Machine –*WMRS*

GLP - *LEKIDs* MuSE - *Multimoded* QUIJOTE - *HEMPTS*

90, 150, 220 GHz 90, 150, *220* GHz 90, 150, 220 GHz

40 GHz 150, 210, 270 GHz 44, 95, 145, 225, 275 GHz 11-20, 30 GHz

CMB Experimental Stages

Snowmass: CF5 Neutrinos Document arxiv:1309.5383

CMB Experimental Stages

arxiv:1309.5383

decadal plan

Credit: C. Chang

Stage IV concept

- Large angular range (degrees to arcminutes) ... minimum 3 arcmin resolution
- Half the sky: 20,000 deg²
- Lots of detectors: ~500,000 Primary technical challenge is one of scale
- Broad frequency coverage (50-240 GHz)
- Target noise of 1 uK-arcmin over 50% sky, starting 2020 on a 5-year survey.

Credit: C. Chang

Stage IV concept

- Large angular range (degrees to arcminutes) ... minimum 3 arcmin resolution
- Half the sky: 20,000 deg²

GHz)

Almost certainly sited in Chile – complete overlap with SKA

Lots of detectors: ~500,000

Perfect to Broad frequency coverage (50-240) extend SKA1 mid frequencies

 Target noise of 1 uK-arcmin over 50% sky, starting 2020 on a 5-year survey.

Possibilities:

- LiteBIRD (Japan concept)
- PIXIE (US concept)
- COrE, PRISM, CMBpol (unlikely for SKA-1; EU, US concepts)

Basic data product: a map

~50 deg² from the SPT-SZ 2500 deg² survey

No 3d information

A map per frequency band

Can look for time-varying sources, although not optimized for it

Derived maps eg Planck lensing map

- Can use multiple frequencies to separate out components, e.g., kinetic SZ map, thermal SZ map, ...
- Can use higher-order correlations to get lensing mass maps (above), anisotropic optical depth maps

Outline

- What mm-wave data will be available?
- Maximizing science
 - Complementary constraints
 - Complementary data
 - Cross-correlations

South Pole Telescope

Independent constraints (possibly complementary?)

SKA-side:

From Pritchard et al. 2015

	$\log \Omega_m h^2$	$\log \Omega_b h^2$	Ω_Λ	n_s	$\log(A_s/10^{-10})$	Ω_k	$dn_s/d\log k$	$M_{\rm V}~{ m (eV)}$
Value	-1.9	-3.8	0.7	0.95	-0.19	0	0	0.3
Planck	0.028	0.0068	0.038	0.0035	0.0097	0.0022	0.0047	0.35
Hera	0.0091	0.0055	0.011	0.003	0.0088	0.0021	0.0036	0.12
SKA0	0.017	0.0058	0.023	0.0032	0.009	0.0022	0.0034	0.22
SKA1	0.0083	0.0051	0.01	0.003	0.0084	0.002	0.0018	0.12

CMB-side (typical for Stage III):

Datasets	Cosmological parameter constraints									
	$\sigma(\Omega_b h^2)$	$\sigma(\Omega_c h^2)$	$\sigma(A_s)$	$\boldsymbol{\sigma}(n_s)$	${oldsymbol \sigma}(h)$	$oldsymbol{\sigma}(au)$	$\sigma(N_{\rm eff})$	$\sigma(\Sigma m_{v})$	$\boldsymbol{\sigma}(r)$	
	$\times 10^4$	$\times 10^3$	$\times 10^{11}$	$\times 10^3$	$\times 10^2$	$\times 10^3$	$\times 10^{1}$	[meV]	$\times 10^2$	
Planck + DESI	1.17	0.97	3.75	3.66	1.12	4.92	0.39	91	5.72	
+ SPT-3G + Simons-Wide	0.63	0.61	2.35	2.18	0.078	4.61	0.28	24	1.31	

Example: neutrinos

Detailed forecasts TBD, but ellipses appear somewhat orthogonal

Testing unusual models

Better CMB data and SKA data are both forecast to improve cosmological constraints Unclear how much better the combination is...

e.g.,

- Primordial magnetic fields
- Early dark energy
- DM annihilation/decay
- Light DM models (~keV; only PIXIE)
- Cosmic strings

Testing unusual models

Better CMB data and SKA data are both forecast to improve cosmological constraints Unclear how much better the combination is...

e.g.,

- Primordial magnetic fields
- Early dark energy
- DM annihilation/decay
- Light DM models (~keV; only PIXIE)
- Cosmic strings

Pogosian 2013: PRISM (CMB): σ (PMF) = 0.05 nG Sethi & Subrmanian: SKA σ (PMF) = 0.1 nG

 $\mathsf{NASA}/\mathsf{Swift}$

Complementary data

SKA-low 50-350 MHz SKA-mid 350 MHz-14 GHz CMB-IV 50 GHz-240 GHz

Map out SEDs Gamma ray bursts FRBs New mystery objects

Why are these interesting for us?

- GRBs are highly beamed in gamma rays, since the jet (and Γ) are very high, with a poorly constrained opening angle
- As a result, it's not clear how many of them there are
- At longer wavelengths, the afterglows are less tightly beamed, allowing a rate comparison
- Also: possible class of "gamma-dark" bursts (especially interesting as cosmic ray accelerators)
- Measuring any of this requires the ability to discover bursts at long wavelengths, rather than doing followup
- Obsessive reobservation of a fixed patch of sky is the perfect way to detect these

credit: N. Whitehorn

Comparative sensitivity

An automated archival VLA transients survey.

Cross-correlations - lensing x low-redshift - kSZ x EOR - τ x EOR

In conclusion

 Expect extremely sensitive, broad-band CMB experiments on the timescale of SKA-1

 Broad overlap in sky coverage; complementary frequencies

Cross-correlations are potentially interesting

- Mitigate foregrounds
- but Detectability is uncertain