What SKA Can Tell Us About Dark Matter

Katherine J. Mack School of Physics University of Melbourne

www.ph.unimelb.edu.au/~kmack

Wednesday, 8 April 15

dark matter basics

Wednesday, 8 April 15

dark matter basics

Dark matter is the dominant form of matter in the Universe

dark matter basics

Dark matter is the dominant form of matter in the Universe

So far, all evidence for dark matter comes from **astrophysics**

- Dark matter density field
 - angular dependence of 21 cm power spectrum
 - Iensing convergence

- Dark matter density field
 - angular dependence of 21 cm power spectrum
 - Iensing convergence
- Structure formation
 - velocity offset between dark matter & baryons

- Dark matter density field
 - angular dependence of 21 cm power spectrum
 - Iensing convergence
- Structure formation
 - velocity offset between dark matter & baryons
- Small-scale structure and bias (warm dark matter)

- Dark matter density field
 - angular dependence of 21 cm power spectrum
 - Iensing convergence
- Structure formation
 - velocity offset between dark matter & baryons
- Small-scale structure and bias (warm dark matter)
- Radio counterparts (axions, annihilation)

- Dark matter density field
 - angular dependence of 21 cm power spectrum
 - Iensing convergence
- Structure formation
 - velocity offset between dark matter & baryons
- Small-scale structure and bias (warm dark matter)
- Radio counterparts (axions, annihilation)
- Energy injection (annihilation, decay)

25 Mpc slice

- Dark matter density field
 - angular dependence of 21 cm power spectrum
 - lensing convergence
- Structure formation
 - velocity offset between dark matter & baryons
- Small-scale structure and bias (warm dark matter)
- Radio counterparts (axions, annihilation)
- Energy injection (annihilation, decay)

velocity offsets

Tseliakhovich & Hirata 2010 McQuinn & O'Leary 2012 Fialkov et al. 2014 Ali-Haimoud et al. 2014

animation by Daniel Eisenstein

velocity offsets

animation by Daniel Eisenstein

velocity offsets

Tseliakhovich & Hirata 2010 McQuinn & O'Leary 2012 Fialkov et al. 2014 Ali-Haimoud et al. 2014 Marsh 2015

velocity offsets

Tseliakhovich & Hirata 2010 McQuinn & O'Leary 2012 Fialkov et al. 2014 Ali-Haimoud et al. 2014 Marsh 2015

small-scale structure

warm dark matter free-streams out of density peaks

cut-off in smallscale power spectrum

Sitwell et al. 2014

small-scale structure

 $m_{\chi} = 2 \text{ keV}$

4 keV

Wednesday, 8 April 15

radio counterparts: axions

axion dark matter: converts to photons in the presence of a magnetic field

radio counterparts: axions

axion dark matter: converts to photons in the presence of a magnetic field

gam

a

White & Quinn, Honors Thesis, 2008

radio counterparts: axions

calculated all-sky signal: 20 photons/s/m²

Credit: Sky & Telescope / Gregg Dinderman

power volume

 $rac{\langle \sigma v
angle
ho_{\chi}^2}{m}$

 $\langle \sigma v \rangle$

velocity-averaged selfannihilation rate

 ho_χ

dark matter density

dark matter particle mass

Kuhlen, Madau & Silk 2009

annihilation power is proportional to p²
 high-density peaks produce strongest signals

• MEDEA follows every particle from TeV down to eV energies in amentioncals by Garmelo Evoli

- annihilation radiation cascades through many channels
- counterparts: heating, ionization, photons
- e⁺ / e⁻ produce radio synchrotron

galaxies with mass 10^{12} M_{Sun} halo profile: NFW $\langle B \rangle = 5 \mu G$ WIMP mass: 60 GeV $\langle \sigma v \rangle = 3x10^{-27}$ cm³ s⁻¹ annihilation channel: bottom quarks

Colafrancesco et al. 2014

upper limits on <ov> from 30-hour SKA integration z=0.01, 5 GHz

energy injection: global

Evoli et al. 2014

heating rate from models with different dark matter halo small-scale cut-offs; arrows indicate where dark matter heating dominates astrophysical sources

21cm all-sky signal

energy injection: local

Question:

If dark matter is annihilating **within baryonic halos**, does this constitute an effective "feedback" process?

energy injection: local

Question:

If dark matter is annihilating **within baryonic halos**, does this constitute an effective "feedback" process?

Resources:

PYTHIA code: dark matter annihilation events
MEDEA2 code: energy transfer to baryons
Halo models: density profile, mass-concentration

annihilation within halos

Ratio: dark matter annihilation energy (over Hubble time) to gas binding energy

annihilation within halos

Ratio: dark matter annihilation energy (over Hubble time) to gas binding energy

annihilation within halos

conclusions

- SKA has the ability to probe the density field to high precision -- test ACDM scenario
- dark matter phenomenology can affect
 - growth of structure
 - evolution of the intergalactic medium
 - possible radio signals