The structure and motions of the Milky Way & Local Group

Simon Ellingsen

Overview

• Science :

- Astrometry and Very Long Baseline Interferometry.
- The structure of the Milky Way.
- Motion of the Local Group and "nearfield" cosmology.
- Technical
 - Is VLBI part of SKA phase 1?.... Yes!
 Assumptions and likely practical limitations

Astronomy vs. Astrophysics What is the difference between astronomy and astrophys

SITY of

NO IVI

AUSTRALIA

Astrometry with VLBI

- With the ATCA absolute positions are accurate to around 0.4" and relative positions to around 0.05".
- VLBI gives intrinsic resolution around 3 orders of magnitude greater.
- State of the art VLBI astrometry at centimetre wavelengths can achieve absolute accuracies of 0.000005'' (5 μas).
 If we were to take a football and place it on the Moon that would have an angular size of ~150 μas

At the distance of the moon an angular size of 5 μ as corresponds to a linear scale of < 1 mm.

5 µas - That is smaller than a bee's endophallus!

Stuc

Structure of the Milky Way

- Objects in the Milky Way are nearby :
 - Great for sensitivity and resolution.
 - But uncertainties in distance are a major issue.
- With VLBI accurate distances have been measured to more than 100 star formation regions.
- The first trigonometric parallax to a southern star formation has recently been measured (Krishnan et al. 2015, ApJ in press; arXiv:1503.05917).
- A concerted effort is required to "catch-up" to the north prior to SKA1-MID coming on the UNIVERSITY of Studies of the Milky Way and Local

Group

AUSTRALIA

Structure of the Milky Way

Trigonometric parallax of G339.88-1.26

Krishnan et al. 2015, ApJ in press ; arXiv:1503.0 5917

Structure of the Milky Way

Spiral arm structure of the Milky Way from trigonometric parallax. $R_0 = 8.34 \pm 0.16$ kpc $\Theta_0 = 240 \pm 8$ kms⁻¹

Reid et al. 2014, ApJ, **783**, 130

Not just star formation!

- The major uncertainty in the tests of GR from the Hulse-Taylor binary pulsar are due to Galactic motion.
 - Improved Galactic motion parameters result in a factor of 3 reduction in the uncertainty of the orbital decay measurement.
- The distance to the Pleiades is important for stellar evolution. Recent VLBI parallax distances (Melis et al. 2014, Sci, 345, 1029) are 10% higher than Hipparcos.

Motion of the Local Group

- Are the Magellanic Clouds on their first passage of the Milky Way?
- The Magellanic Clouds and other local group members provide a unique opportunity for studying hierarchical structure formation.
- VLBI can measure the proper motion of objects in the Magellanic Clouds to an accuracy of better than 50 µas/year
- With SKA1-mid sensitivity we will be able to detect around 100 objects in the MC and much better measure the CoM motions

VLBI and the SKA

- The first science from an ASKAP antenna was VLBI (Tzioumis et al. 2010).
- Also the first science from the Warkworth 30m antenna (Petrov et al. 2015, PASP in press; arXiv:1502.06802).
- VLBI requirements are modest :
 - A correlator mode to "tie" the array.
 - A suitable time/frequency standard (e.g. H-maser).
 - A recorder.

SKA1-MID VLBI Astrometry

- It currently takes 1 day of array time (over 1 year) to measure a parallax (incl. calibration overheads).
- With SKA1-MID this drops to 4 hrs per source (after re-baselining).
- With this integration time you *also* get improved astrometric accuracy because in-beam phase calibration becomes practical.
- It will be possible to do tomography of nearby spiral arms with SKA1-MID (1% distance at 2 kpc) :
 - Complementary to magnetism and HI studies

SKA1-MID and VLBI

- Hartebeesthoek regularly participates in LBA observations, but limited mutual visibility and a lack of intermediate baselines Australia-Africa provide challenges.
- With SKA1-MID in South Africa we will see similar issues. Establishing intermediate sites as part of AVN developments would enhance science capabilities.
- SKA1-MID will open up the possibility of in-beam phase referencing at 5 cm wavelength for some sources and at SKA2 sensitivity it will be possible for all sources.
- For more details on the assumptions see Green et al. and Loinard et al. in the SKA science book (arXiv:1504.00485 and arXiv:1412.6481 respectively).

Conclusions

- VLBI between SKA1-MID (or parts of it) and the LBA will provide opportunities for early SKA science.
- East-west baselines are important for parallax measurements.
- Our knowledge of the scale and structure of the Milky Way impacts a broad range of astrophysics.
- Having SKA antennas at remote sites in Africa and beyond will maximise the science return from VLBI with the SKA.

