Integrated approach to cosmology

Nicola et al., 2016 arXiv:1607.01014

Andrina Nicola, ETH Zürich with Alexandre Refregier and Adam Amara (ETHZ)

21st July 2016, Cairns

Cosmological probe combination

Different cosmological probes are not independent

Cross-correlations: systematics identification

Robust tests of cosmological model by comparing consistency of different tracers

Images: 6dF, Planck (Damien P. George)

Maps

Spherical harmonic power spectra

Power Spectra

Cosmological constraints

Cosmological constraints

Conclusions

Implementation of probe combination framework

First application to CMB, galaxy clustering and weak lensing

Consider all power spectra (3 auto- and 3 cross-spectra)

Conservative cuts and simplifying approximations

Consistent with existing constraints but more conservative

Highlight tensions appearing in joint analysis

Future work: relax approximations, add cosmological probes, investigate models beyond ACDM

Framework

Data collection CMB: Planck 2015 Galaxy density: SDSS DR8 Weak lensing: SDSS Stripe 82

HEALPix maps CMB auto power spectrum: NSIDE = 2048 Rest: NSIDE = 1024 Foreground reduction, PSF correction

Compute the 6 power spectra using PolSpice (*Szapudi et al., 2001, Chon et al., 2004*) 3 auto-, 3 cross power spectra

Compute cosmological parameter constraints Covariance matrix: from Gaussian simulations of correlated realisations of the 3 probes Dimensions: 6x6 Cosmological parameters: {h, $\Omega_{\rm m}$, $\Omega_{\rm b}$, $n_{\rm s}$, σ_8 } Additional parameters: { $\tau_{\rm reion}$, b, m} MCMC: CosmoHammer (*Akeret et al., 2013*) Theory predictions: CLASS (*Lesgourgues et al., 2011*), PyCosmo (*Refregier et al., in prep.*)

Data description

CMB temperature anisotropies	Survey: Planck 2015 Fiducial foreground-reduced map: Commander Sky coverage: $f_{sky} = 0.776$
galaxy overdensity	Survey: SDSS DR8 Sky coverage: $f_{\rm sky} = 0.27$ Galaxy sample: CMASS1-4 Number of galaxies: $N_{\rm gal} = 853420$ Photometric redshift range $0.45 \le z_{\rm phot} < 0.65$
weak lensing	Survey: SDSS Stripe 82 co-add Sky coverage: $f_{\rm sky} = 0.0069$ Number of galaxies: $N_{\rm gal} = 3322915$ Photometric redshift range: $0.1 \lesssim z_{\rm phot} \lesssim 1.1$ r.m.s. ellipticity per component: $\sigma_e \sim 0.43$

Correction for systematic uncertainties in galaxy data

Linear PSF correction (Hirata & Seljak, 2003)

Covariance matrix

$$\mathscr{L}(D|\theta) \propto e^{-\frac{1}{2}(\mathbf{C}_{\ell}^{\text{obs}} - \mathbf{C}_{\ell}^{\text{theor}})^{\mathrm{T}} C_{G}^{-1}(\mathbf{C}_{\ell}^{\text{obs}} - \mathbf{C}_{\ell}^{\text{theor}})}$$

Covariance matrix from Gaussian simulations

Theoretical predictions computed using Limber approximation

MCMC using CosmoHammer (Akeret et al., 2013)

Cosmological parameters: { $h, \Omega_m, \Omega_b, n_s, \sigma_8$ }

Additional parameters: $\{\tau_{reion}, b, m\}$

Parameter	Prior	Posterior mean
h	flat $\in [0.2, 1.2]$	$0.702^{+0.017}_{-0.018}$
$\Omega_{ m m}$	flat $\in [0.1, 0.7]$	0.278 ± 0.019
$\Omega_{ m b}$	flat $\in [0.01, 0.09]$	0.0457 ± 0.0017
$n_{ m s}$	flat $\in [0.1, 1.8]$	0.978 ± 0.019
σ_8	flat $\in [0.4, 1.5]$	0.807 ± 0.030
$ au_{ m reion}$	Gaussian with $\mu = 0.089, \sigma = 0.02$	$0.0807\substack{+0.0198\\-0.0196}$
b	flat $\in [1., 3.]$	2.12 ± 0.06
m	Gaussian with $\mu = 0.0, \sigma = 0.1$	-0.160 ± 0.082

