Evolution of the dark matter profiles of the most massive galaxy clusters since redshift 1

Amandine M. C. Le Brun CEA Saclay DRF/IRFU Service d'Astrophysique

Collaborators: Romain Teyssier (Zürich), Monique Arnaud (CEA Saclay), Gabriel Pratt (CEA Saclay)

Diving Into The Dark, Cairns, July 18th-22nd 2016

Galaxy clusters and structure formation

- Galaxy clusters: 85% Dark Matter, 12 % hot gas, 3% galaxies
- Form and evolve through merger/accretion along filaments
- test of the physics of hierarchical Dark Matter driven structure formation (Dark Matter and baryons)
- cosmological parameters via N(M,z) or fgas

Evolution of dark matter profiles

- Powerful test of ΛCDM .
- So far mainly been tested in the local Universe and using mostly non-representative samples.
- Detection of large and representative samples of the most massive clusters up to redshift z~1 recently enabled by large surveys using the Sunyaev-Zel'dovich (SZ) effect.
- Requires a systematic comparison between observations and cosmological simulations.

The M2C project

- ~30 SZ selected clusters with M_{500} >5x10¹⁴ M_o in 3 Δz =0.2 redshift bins at z>0.5
- Confirmation and stellar content using NIR
- Follow-up with XMM and Chandra
- Mass profiles obtained using hydrostatic equilibrium assumption

Le Brun et al. 2014 Impact of baryonic physics?

Data: REXCESS, Vikhlinin06, Lin12, Maughan08 and Sun09 Data: Vikhlinin06, Planck Intermediate Results IV, Sun09

See also e.g. Allen et al. 2004, Kravtsov et al. 2006

Self-similar expectation for the evolution

Pilot study of mass profiles at z~1

Arnaud, Bartalucci et al. in prep.

- Suggest less concentrated than average local cluster
- Higher dispersion? consistent with theory?
- Need larger sample and new numerical simulations

Evolution of the dark matter profiles of the most massive galaxy clusters since redshift 1

No existing hydrodynamical cosmological simulations combines a large enough volume and a high enough resolution to simulate the most massive galaxy clusters as:

- they are rare and appear in large volumes (need to simulate volumes of Gpc³)

- high resolution (~kpc) is required to resolve their internal structure.

Simulations

Le Brun et al. in preparation

		Simulation	Box	Particles	mp	e	$\Omega_{\rm M}$	$\Omega_{\rm B}$	Ω_{Λ}	σ_8	ns	H ₀	Code	
	pin16	BigMD27 BigMD29 BigMD31 BigMDPL BigMDPLnw HMDPL	2.5 2.5 2.5 2.5 2.5 2.5 4.0	3840 ³ 3840 ³ 3840 ³ 3840 ³ 3840 ³ 4096 ³	$\begin{array}{c} 2.1 \times 10^{10} \\ 2.2 \times 10^{10} \\ 2.4 \times 10^{10} \\ 2.4 \times 10^{10} \\ 2.4 \times 10^{10} \\ 7.9 \times 10^{10} \\ 7.9 \times 10^{10} \end{array}$	10.0 10.0 10.0 10.0 10.0 25.0	0.270 0.289 0.309 0.307 0.307 0.307	0.047 0.047 0.047 0.048 0.048 0.048	0.730 0.711 0.691 0.693 0.693 0.693	0.820 0.820 0.820 0.829 0.829 0.829 0.829	0.95 0.95 0.95 0.96 0.96 0.96	70.0 c 70.0 c 70.0 c 67.8 c 67.8 c 67.8 c	3ADGET-2 3ADGET-2 3ADGET-2 3ADGET-2 GADGET-2	
	KIy	MDPL MultiDark SMDPL BolshoiP Bolshoi	4.0 1.0 0.4 0.25 0.25	4096 ⁻ 3840 ³ 2048 ³ 3840 ³ 2048 ³ 2048 ³	1.5×10^{9} 8.7×10^{9} 9.6×10^{7} 1.5×10^{8} 1.3×10^{8}	5 7.0 1.5 1.0 1.0	0.307 0.270 0.307 0.307 0.307 0.270	0.048 0.048 0.047 0.048 0.048 0.047	0.693 0.730 0.693 0.693 0.693 0.730	0.829 0.829 0.820 0.829 0.823 0.823 0.820	0.96 0.95 0.96 0.96 0.96 0.95	67.8 c 70.0 A 67.8 c 67.8 A 70.0 A	SADGET-2 SADGET-2 ART SADGET-2 ART	
	v14	Simulation	Np	$L_{\rm box}$ (Mpc h^{-1})	$\epsilon \ (\text{kpc} \ h^{-1})$	$m_{\rm p}$ (M $\odot h^{-1}$	¹)	Name	Box size, $(h^{-1} Mp)$, <i>L N</i> c)	Par (/	t. mass, m _p h ^{−1} M _☉)	Force soft., ϵ (h^{-1} kpc)	
	Ludlov	MS-XXL MS-I MS-II Aq-A-2 Aq-A-1	6720 ³ 2160 ³ 2160 ³ 5.3×10 ⁸ 4.3×10 ⁹	3000 500 100 -	10 5 1 0.050 0.015	6.17×10 8.61×10 6.89×10 1.00×10 1.25×10	9 6 4 3	P-20.1 P-20.2 P-20.3 P-20.4	20 20 20 20	300 ³ 300 ³ 300 ³ 300 ³	2.0 2.0 2.0 2.0	511×10^{7} 511×10^{7} 511×10^{7} 511×10^{7} 511×10^{7}	1.67 1.67 1.67 1.67	
Box L1000	L (h ⁻	⁻¹ Mpc) 000 1	$N^3 m_p$ 024 ³ 7.0	$(h^{-1} M_{\odot}) \times 10^{10}$	$\epsilon (h^{-1} \text{ kpc})$ 33.0	ε/(L 1/3	/ <u>N</u>) 30	P-30.1 P-30.2 P-60 P-45 1	30 30 60	300 ³ 300 ³ 600 ³ 300 ³	8.8 8.8 8.8	811×10^7 811×10^7 811×10^7 811×10^7 874×10^8	2.50 2.50 2.50 3.75	outton
L0500 L0250 L0125 L0063	6	500 1 250 1 125 1 52.5 1	$\begin{array}{ccc} 024^3 & 8.7 \\ 024^3 & 1.1 \\ 024^3 & 1.4 \\ 024^3 & 1.7 \end{array}$	$\times 10^9$ $\times 10^9$ $\times 10^8$ $\times 10^7$	14.0 5.8 2.4 1.0	1/2 1/4 1/5 1/6	35 42 51 60	P-45.2 P-90 P-80 P-130	45 90 80 130	300 ³ 450 ³ 350 ³ 450 ³	2.9 7.0 1.0 2.1	974×10^{8} 974×10^{8} 974×10^{8} 952×10^{9} 124×10^{9}	3.75 5.00 5.71 7.22	14
	Diemer14								180 270 400 600	450 ³ 450 ³ 450 ³ 600 ³	5.0 1.9 6.1 8.8	539×10^9 003×10^{10} 88×10^{10} 311×10^{10}	10.0 15.0 22.2 25.0	
Lar <u></u> Too	ge Iov	enoi v m <u>a</u>	ugn : .ss <u>a</u>	size .nd s	spatia	al r	es	P-1000 Olut	1000 ion a	and	4.0 SO	079 × 10 ¹¹	^{41.7} times siz	Ze

10

Simulations

- In practice: (i) doing three large (1 Gpc/h on a side with 2048³ DM particles) DM only simulations and (ii) zooming at high resolution (a few kpc) on 50-100 galaxy clusters in each of the redshift bins which will progressively include the relevant galaxy formation physics.
- All the simulations are done with the AMR code RAMSES (Teyssier 2002) on the OCCIGEN supercomputer at CINES in Montpellier using a large French computing time-allocation (>13 million CPU hours already allocated over 2015-2016; PI Le Brun).

Most galaxy clusters at z=1 are disturbed

0.29 0.291 0.292 0.293 0.294 0.295

0.17

0,169

0.421 0.422 0.423 0.424 0.425 0.426 0.427 0.428

-11.5

0.468

0.467

0.288

0,289

-11

0.094

0.093

0.12 0.121 0.122 0.123 0.124 0.125 0.126 0.127 0.128

-11.5

Evolution of relaxation state in preparation

Evolution of relaxation state in preparation

Evolution of relaxation state in preparation

Evolution of density profiles Le Brun et al. in preparation

Density profiles

Le Brun et al. in preparation

Evolution of density profiles Le Brun et al. in preparation

Density profiles

Le Brun et al. in preparation

Impact of resolution

Le Brun et al. in preparation

- The most massive galaxy clusters could be powerful cosmological probes as:
- 1. They should be less affected by non-gravitational physics
- 2. They are supposed to be the most sensitive to the paradigm of structure formation
- **BUT** they are still forming and therefore far from being relaxed
- Inner structure of the 25 most massive clusters shows no signs of converging to an asymptotic slope. Gets much shallower than the asymptotic NFW slope.
- Seems to get shallower as redshift decreases (at least since z=1).